Data quality

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Data are of high quality "if they are fit for their intended uses in operations, decision making and planning" (J. M. Juran). Alternatively, the data are deemed of high quality if they correctly represent the real-world construct to which they refer. Furthermore, apart from these definitions, as data volume increases, the question of internal consistency within data becomes paramount, regardless of fitness for use for any external purpose, e.g. a person's age and birth date may conflict within different parts of a database. The first views can often be in disagreement, even about the same set of data used for the same purpose. This article discusses the concept as it related to business data processing, although of course other data have various quality issues as well.

Definitions[edit]

This list is taken from the online book "Data Quality: High-impact Strategies".[1] See also the Glossary of data quality terms [2]

  • Degree of excellence exhibited by the data in relation to the portrayal of the actual scenario.
  • The state of completeness, validity, consistency, timeliness and accuracy that makes data appropriate for a specific use.[3]
  • The totality of features and characteristics of data that bears on their ability to satisfy a given purpose; the sum of the degrees of excellence for factors related to data.[4]
  • The processes and technologies involved in ensuring the conformance of data values to business requirements and acceptance criteria.[5]
  • Complete, standards based, consistent, accurate and time stamped.[6]

History[edit]

Before the rise of the inexpensive server, massive mainframe computers were used to maintain name and address data so that the mail could be properly routed to its destination. The mainframes used business rules to correct common misspellings and typographical errors in name and address data, as well as to track customers who had moved, died, gone to prison, married, divorced, or experienced other life-changing events. Government agencies began to make postal data available to a few service companies to cross-reference customer data with the National Change of Address registry (NCOA). This technology saved large companies millions of dollars compared to manually correcting customer data. Large companies saved on postage, as bills and direct marketing materials made their way to the intended customer more accurately. Initially sold as a service, data quality moved inside the walls of corporations, as low-cost and powerful server technology became available.

Companies with an emphasis on marketing often focus their quality efforts on name and address information, but data quality is recognized as an important property of all types of data. Principles of data quality can be applied to supply chain data, transactional data, and nearly every other category of data found in the enterprise. For example, making supply chain data conform to a certain standard has value to an organization by: 1) avoiding overstocking of similar but slightly different stock; 2) improving the understanding of vendor purchases to negotiate volume discounts; and 3) avoiding logistics costs in stocking and shipping parts across a large organization.

While name and address data has a clear standard as defined by local postal authorities, other types of data have few recognized standards. There is a movement in the industry today to standardize certain non-address data. The non-profit group GS1 is among the groups spearheading this movement.

For companies with significant research efforts, data quality can include developing protocols for research methods, reducing measurement error, bounds checking of the data, cross tabulation, modeling and outlier detection, verifying data integrity, etc.

Overview[edit]

There are a number of theoretical frameworks for understanding data quality. A systems-theoretical approach influenced by American pragmatism expands the definition of data quality to include information quality, and emphasizes the inclusiveness of the fundamental dimensions of accuracy and precision on the basis of the theory of science (Ivanov, 1972). One framework, dubbed "Zero Defect Data" (Hansen, 1991) adapts the principles of statistical process control to data quality. Another framework seeks to integrate the product perspective (conformance to specifications) and the service perspective (meeting consumers' expectations) (Kahn et al. 2002). Another framework is based in semiotics to evaluate the quality of the form, meaning and use of the data (Price and Shanks, 2004). One highly theoretical approach analyzes the ontological nature of information systems to define data quality rigorously (Wand and Wang, 1996).

A considerable amount of data quality research involves investigating and describing various categories of desirable attributes (or dimensions) of data. These lists commonly include accuracy, correctness, currency, completeness and relevance. Nearly 200 such terms have been identified and there is little agreement in their nature (are these concepts, goals or criteria?), their definitions or measures (Wang et al., 1993). Software engineers may recognise this as a similar problem to "ilities".

MIT has a Total Data Quality Management program, led by Professor Richard Wang, which produces a large number of publications and hosts a significant international conference in this field (International Conference on Information Quality, ICIQ). This program grew out of the work done by Hansen on the "Zero Defect Data" framework (Hansen, 1991).

In practice, data quality is a concern for professionals involved with a wide range of information systems, ranging from data warehousing and business intelligence to customer relationship management and supply chain management. One industry study estimated the total cost to the US economy of data quality problems at over US$600 billion per annum (Eckerson, 2002). Incorrect data – which includes invalid and outdated information – can originate from different data sources – through data entry, or data migration and conversion projects.[7]

In 2002, the USPS and PricewaterhouseCoopers released a report stating that 23.6 percent of all U.S. mail sent is incorrectly addressed.[8]

One reason contact data becomes stale very quickly in the average database – more than 45 million Americans change their address every year.[9]

In fact, the problem is such a concern that companies are beginning to set up a data governance team whose sole role in the corporation is to be responsible for data quality. In some[who?] organizations, this data governance function has been established as part of a larger Regulatory Compliance function - a recognition of the importance of Data/Information Quality to organizations.

Problems with data quality don't only arise from incorrect data. Inconsistent data is a problem as well. Eliminating data shadow systems and centralizing data in a warehouse is one of the initiatives a company can take to ensure data consistency.

Enterprises, scientists, and researchers are starting to participate within data curation communities to improve the quality of their common data.[10]

The market is going some way to providing data quality assurance. A number of vendors make tools for analysing and repairing poor quality data in situ, service providers can clean the data on a contract basis and consultants can advise on fixing processes or systems to avoid data quality problems in the first place. Most data quality tools offer a series of tools for improving data, which may include some or all of the following:

  1. Data profiling - initially assessing the data to understand its quality challenges
  2. Data standardization - a business rules engine that ensures that data conforms to quality rules
  3. Geocoding - for name and address data. Corrects data to US and Worldwide postal standards
  4. Matching or Linking - a way to compare data so that similar, but slightly different records can be aligned. Matching may use "fuzzy logic" to find duplicates in the data. It often recognizes that 'Bob' and 'Robert' may be the same individual. It might be able to manage 'householding', or finding links between husband and wife at the same address, for example. Finally, it often can build a 'best of breed' record, taking the best components from multiple data sources and building a single super-record.
  5. Monitoring - keeping track of data quality over time and reporting variations in the quality of data. Software can also auto-correct the variations based on pre-defined business rules.
  6. Batch and Real time - Once the data is initially cleansed (batch), companies often want to build the processes into enterprise applications to keep it clean.

There are several well-known authors and self-styled experts, with Larry English perhaps the most popular guru. In addition, the International Association for Information and Data Quality (IAIDQ) was established in 2004 to provide a focal point for professionals and researchers in this field.

ISO 8000 is the international standard for data quality.

Data quality control[edit]

Data quality control is the process of controlling the usage of data with known quality measurement—for an application or a process. This process is usually done after a Data Quality Assurance (QA) process, which consists of discovery of data inconsistency and correction.

Data QA process provides following information to Data Quality Control (QC):

  • Severity of inconsistency
  • Incompleteness
  • Accuracy
  • Precision
  • Missing / Unknown

The Data QC process uses the information from the QA process, then it decides to use the data for analysis or in an application or business process. For example, if a Data QC process finds the data contains too much error or inconsistency, it rejects the data to be processed. The usage of incorrect data could crucially impact output. For example, providing invalid measurements from several sensors to the automatic pilot feature on an aircraft could cause it to crash. Thus, establishing data QC process provides the protection of usage of data control and establishes safe information usage.

optimum use of data quality[edit]

Data Quality is a niche area which is the backbone for the integrity of the data management by covering gaps of data issues. This is the key piece that aids to data governance and monitors data to find exceptions undiscovered by current data management operations. Some data quality checks may translate as future business requirements. Below are the possible sections of data flows that need perennial DQ checks.

Data quality excludes activities done in business logic to avoid duplication of the check (redundancy) and better ROI (return of investment).

Data if sourced from database that has valid not null columns should not under go DQ check for completeness and precision. (redundancy). So it’s done infrequently to discover database design issues or Source inconsistencies. (this should be avoided as a regular check). Results are used for DB structure changes

Data if validated against a set of well-defined valid values are atomically performed to discover new valid values or discrepant valid values through the validity DQ check. Results are used for Reference data updates in the master data management.

Data if validated from third party before providing to the internal transformations should be checked for its accuracy (DQ).

Data, either semi static or a golden copy, that’s maintained internally (reference data or master data (Master data management: MDM) ) is validated for its consistency check to segregate discrepant or/and new data for the MDM process.

Time stamp, that proves the data position (time and location), comparisons are done to verify the SLA of the data from one team to another team and validated against a known maximum constant time difference for its timeliness DQ checks. SLA should be defined and used as source for this DQ check.

Complex logic which is segregated into multiple processes and can be rolled up into a logical result with minimum/maximum values or interrelationships can be validated for reasonableness DQ check. This check may discover outliers of the data and its drift from BAU (business as usual) and eventually provide possible exceptions. And then they may be identified as data issues. This check may be simple generic rules engulfed by large chunk of data or it can be complicated logic pertaining to the core business of the company. This DQ check requires high degree of business knowledge. And discovery of reasonableness issues may aid for policy/strategy changes by either business or data governance or both.

Conformity checks and integrity checks need not covered in all business needs, it’s strictly under the database architecture's discretion.

Data Quality Assurance[edit]

Data quality assurance is the process of profiling the data to discover inconsistencies, and other anomalies in the data and performing data cleansing activities (e.g. removing outliers, missing data interpolation) to improve the data quality .

These activities can be undertaken as part of data warehousing or as part of the database administration of an existing piece of applications software.

Criticism of existing tools and processes[edit]

The main reasons cited are:

  • Project costs: costs typically in the hundreds of thousands of dollars
  • Time: lack of enough time to deal with large-scale data-cleansing software
  • Security: concerns over sharing information, giving an application access across systems, and effects on legacy systems

Professional associations[edit]

International Association for Information and Data Quality (IAIDQ)

See also[edit]

References[edit]

Further reading[edit]

  • Baamann, Katharina, "Data Quality Aspects of Revenue Assurance", Article
  • Eckerson, W. (2002) "Data Warehousing Special Report: Data quality and the bottom line", Article
  • Ivanov, K. (1972) "Quality-control of information: On the concept of accuracy of information in data banks and in management information systems". The University of Stockholm and The Royal Institute of Technology. Doctoral dissertation.
  • Hansen, M. (1991) Zero Defect Data, MIT. Masters thesis [1]
  • Kahn, B., Strong, D., Wang, R. (2002) "Information Quality Benchmarks: Product and Service Performance," Communications of the ACM, April 2002. pp. 184–192. Article
  • Price, R. and Shanks, G. (2004) A Semiotic Information Quality Framework, Proc. IFIP International Conference on Decision Support Systems (DSS2004): Decision Support in an Uncertain and Complex World, Prato. Article
  • Redman, T. C. (2004) Data: An Unfolding Quality Disaster Article
  • Wand, Y. and Wang, R. (1996) “Anchoring Data Quality Dimensions in Ontological Foundations,” Communications of the ACM, November 1996. pp. 86–95. Article
  • Wang, R., Kon, H. & Madnick, S. (1993), Data Quality Requirements Analysis and Modelling, Ninth International Conference of Data Engineering, Vienna, Austria. Article
  • Fournel Michel, Accroitre la qualité et la valeur des données de vos clients, éditions Publibook, 2007. ISBN 978-2-7483-3847-8.
  • Daniel F., Casati F., Palpanas T., Chayka O., Cappiello C. (2008) "Enabling Better Decisions through Quality-aware Reports", International Conference on Information Quality (ICIQ), MIT. Article
  • Jack E. Olson (2003), “Data Quality: The Accuracy dimension”, Morgan Kaufmann Publishers