Deltoidal hexecontahedron

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Deltoidal hexecontahedron
Deltoidal hexecontahedron
Click on picture for large version
spinning version
Type Catalan
Coxeter diagram CDel node f1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node f1.png
Face polygon DU27 facets.png
kite
Faces 60
Edges 120
Vertices 62 = 12 + 20 + 30
Face configuration V3.4.5.4
Symmetry group Ih, H3, [5,3], (*532)
Rotation group I, [5,3]+, (532)
Dihedral angle 154° 7' 17"
Properties convex, face-transitive
Small rhombicosidodecahedron.png
rhombicosidodecahedron
(dual polyhedron)
Deltoidal hexecontahedron net
Net

In geometry, a deltoidal hexecontahedron (also sometimes called a trapezoidal hexecontahedron, a strombic hexecontahedron, or a tetragonal hexacontahedron) is a catalan solid which looks a bit like either an overinflated dodecahedron or icosahedron. It is sometimes also called the trapezoidal hexecontahedron or strombic hexecontahedron. Its dual polyhedron is the rhombicosidodecahedron.

The 60 faces are deltoids or kites (not trapezoidal). The short and long edges of each kite are in the ratio 1.00:1.54.

It is the only Archimedean dual which does not have a Hamiltonian path among its vertices.

Related polyhedra and tilings[edit]

Family of uniform icosahedral polyhedra
Symmetry: [5,3], (*532) [5,3]+, (532)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-53-t0.png Uniform polyhedron-53-t01.png Uniform polyhedron-53-t1.png Uniform polyhedron-53-t12.png Uniform polyhedron-53-t2.png Uniform polyhedron-53-t02.png Uniform polyhedron-53-t012.png Uniform polyhedron-53-s012.png
{5,3} t{5,3} r{5,3} 2t{5,3}=t{3,5} 2r{5,3}={3,5} rr{5,3} tr{5,3} sr{5,3}
Duals to uniform polyhedra
CDel node f1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 5.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Icosahedron.svg Triakisicosahedron.jpg Rhombictriacontahedron.svg Pentakisdodecahedron.jpg POV-Ray-Dodecahedron.svg Deltoidalhexecontahedron.jpg Disdyakistriacontahedron.jpg Pentagonalhexecontahedronccw.jpg
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5

This tiling is topologically related as a part of sequence of deltoidal polyhedra with face figure (V3.4.n.4), and continues as tilings of the hyperbolic plane. These face-transitive figures have (*n32) reflectional symmetry.

Dimensional family of expanded polyhedra and tilings: 3.4.n.4
Symmetry
*n32
[n,3]
Spherical Euclidean Compact hyperbolic Paracompact
*232
[2,3]
D3h
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
P6m
*732
[7,3]
 
*832
[8,3]...
 
*∞32
[∞,3]
 
Expanded
figure
Spherical triangular prism.png
3.4.2.4
Uniform tiling 332-t02.png
3.4.3.4
Uniform tiling 432-t02.png
3.4.4.4
Uniform tiling 532-t02.png
3.4.5.4
Uniform polyhedron-63-t02.png
3.4.6.4
Uniform tiling 73-t02.png
3.4.7.4
Uniform tiling 83-t02.png
3.4.8.4
H2 tiling 23i-5.png
3.4.∞.4
Coxeter
Schläfli
CDel node 1.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{2,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{3,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{4,3}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{5,3}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{6,3}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{7,3}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{8,3}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{∞,3}
Deltoidal figure Triangular dipyramid.png
V3.4.2.4
Rhombicdodecahedron.jpg
V3.4.3.4
Deltoidalicositetrahedron.jpg
V3.4.4.4
Deltoidalhexecontahedron.jpg
V3.4.5.4
Tiling Dual Semiregular V3-4-6-4 Deltoidal Trihexagonal.svg
V3.4.6.4
Deltoidal triheptagonal til.png
V3.4.7.4
Deltoidal trioctagonal til.png
V3.4.8.4
Deltoidal triapeirogonal til.png
V3.4.∞.4
Coxeter CDel node f1.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node f1.png

See also[edit]

References[edit]

  • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X.  (Section 3-9)
  • The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 [1] (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, page 286, tetragonal hexecontahedron)

External links[edit]

  • Example in real life -- A ball almost 4 meters in diameter, from ripstop nylon, and inflated by the wind. It bounces around on the ground so that kids can play with it at kite festivals.