Detlef Weigel

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Detlef Weigel
Detlef Weigel.jpg
Born (1961-12-15) December 15, 1961 (age 52)
Fields Biology
Institutions Max Planck Institute for Developmental Biology
Salk Institute

Detlef Weigel (born 1961 in Lower Saxony, Germany) is a German American scientist working at the interface of developmental and evolutionary biology.

Scientific career[edit]

Weigel was an undergraduate in biology and chemistry at the universities of Bielefeld and Cologne. In 1986, he graduated with a Diploma in biology for this thesis on Drosophila neurogenesis with the late José Campos-Ortega. In 1988, he moved to the Max Planck Institute for Developmental Biology in Tübingen. During his PhD work with Herbert Jäckle, he discovered the founding member of an important class of transcription factors, the Forkhead/FOX proteins.[1][2] In 1988, he graduated with a PhD (summa cum laude) from the Eberhard-Karls-Universität.

Weigel began to work with plants during his postdoctoral research with Elliot M. Meyerowitz at Caltech, where he cloned the floral regulator LEAFY from Arabidopsis thaliana.[3] From 1993 to 2002, he was an Assistant and then Associate Professor at the Salk Institute for Biological Studies in La Jolla. In 2002, he accepted an appointment as Scientific Member and Director at the Max Planck Institute for Developmental Biology, where he founded the Department for Molecular Biology. He is also an Adjunct Professor at the Salk Institute and the University of Tübingen.

Scientific Work[edit]

During the 1990s, Weigel mostly studied the development of individual flowers and how the onset of flowering is regulated. His group made important discoveries in both areas. Together with Ove Nilsson, he demonstrated that transfer of the LEAFY gene from Arabidopsis thaliana to aspen trees was sufficient to reduce the time to flowering from years to months.[4] Weigel and his team isolated the FT gene,[5] which was later found to be an important component of the mobile signal inducing flowering.[6] New genetic tools developed by his group led to the discovery of the first microRNA mutant in plants.[7]

Through his study of factors that control the onset of flowering, a quintessential adaptive trait, Weigel became interested in more general questions of evolution. Apart from work on genetic variation in environment-dependent developmental processes, his group is known for the generation of extensive genomic resources, such as the first haplotype map for a non-mammalian species.[8][9] To further exploit and advance the understanding of genetic variation, Weigel and colleagues initiated the 1001 Genomes project for Arabidopsis thaliana. Related to this is a new area of interest, in reproductive isolation. In collaboration with Jeffery Dangl, his group discovered that genetic barriers in plants are often associated with autoimmunity. In work led by former postdoc Kirsten Bomblies, now an Assistant Professor at Harvard, they could show that in certain hybrid offspring, specific gene products contributed by one of the parents may be inappropriately recognized as foreign and pathogenic, and thus trigger pervasive cell death throughout the plant.[10]

Honors and awards[edit]


  1. ^ Weigel D, Jürgens G, Küttner F, Seifert E, Jäckle H (1989). "The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo". Cell 57 (4): 645–658. doi:10.1016/0092-8674(89)90133-5. PMID 2566386. 
  2. ^ Weigel D, Jäckle H (1990). "The fork head domain, a novel DNA-binding motif of eucaryotic transcription factors?". Cell 63 (3): 455–456. doi:10.1016/0092-8674(90)90439-L. PMID 2225060. 
  3. ^ Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992). "LEAFY controls floral meristem identity in Arabidopsis". Cell 69 (5): 843–859. doi:10.1016/0092-8674(92)90295-N. PMID 1350515. 
  4. ^ Weigel D, Nilsson O (1995). "A developmental switch sufficient for flower initiation in diverse plants". Nature 377 (6549): 495–500. doi:10.1038/377495a0. PMID 7566146. 
  5. ^ Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999). "Activation tagging of the floral inducer FT". Science 286 (5446): 1962–1965. doi:10.1126/science.286.5446.1962. PMID 10583961. 
  6. ^ Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005). "Integration of spatial and temporal information during floral induction in Arabidopsis". Science 309 (5737): 1056–1059. doi:10.1126/science.1114358. PMID 16099980. 
  7. ^ Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003). "Control of leaf morphogenesis by microRNAs". Nature 425 (6955): 257–263. doi:10.1038/nature01958. PMID 12931144. 
  8. ^ Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G, Shinn P, Warthmann N, Hu TT, Fu G, Hinds DA, Chen H, Frazer KA, Huson DH, Schölkopf B, Nordborg M, Rätsch G, Ecker JR, Weigel D (2007). "Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana". Science 317 (5836): 338–342. doi:10.1126/science.1138632. PMID 17641193. 
  9. ^ Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM, Ossowski S, Ecker JR, Weigel D, Nordborg M (2007). "Recombination and linkage disequilibrium in Arabidopsis thaliana". Nat. Genet. 39 (9): 1151–1155. doi:10.1038/ng2115. PMID 17676040. 
  10. ^ Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C, Dangl JL, Weigel D (2007). "Autoimmune Response as a Mechanism for a Dobzhansky-Muller-Type Incompatibility Syndrome in Plants". PLoS Biol. 5 (9): e23. doi:10.1371/journal.pbio.0050236. PMC 1964774. PMID 17803357. 

External links[edit]