Differential equations of addition

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In cryptography, differential equations of addition (DEA) are one of the most basic equations related to differential cryptanalysis that mix additions over two different groups (e.g. addition modulo 232 and addition over GF(2)) and where input and output differences are expressed as XORs.

Examples of Differential Equations of Addition[edit]

Differential equations of addition (DEA) are of the following form:

(x+y)\oplus((x\oplus a)+(y\oplus b))=c

where x and y are n-bit unknown variables and a, b and c are known variables. The symbols + and \oplus denote addition modulo 2^n and bitwise exclusive-or respectively. The above equation is denoted by (a, b, c).

Let a set S=\{(a_i, b_i, c_i)|i is an integer less than k\} denote a system of k DEA where k is a polynomial in n. It has been proved that the satisfiability of an arbitrary set of DEA is in the complexity class P when a brute force search requires an exponential time.

Usage of Differential Equations of Addition[edit]

Solution to an arbitrary set of DEA (either in batch and or in adaptive query model) was due to Souradyuti Paul and Bart Preneel. The solution techniques have been used to attack the stream cipher Helix.

References[edit]