Dihydroxyacetone phosphate

From Wikipedia, the free encyclopedia
Jump to: navigation, search
"DHAP" redirects here. For chemotherapy regimen, see DHAP (chemotherapy).
Dihydroxyacetone phosphate
Dihydroxyacetone phosphate
Identifiers
CAS number 57-04-5 N
PubChem 4643300
ChemSpider 3833110 N
ChEBI CHEBI:57642 N
Jmol-3D images Image 1
Properties
Molecular formula C3H7O6P
Molar mass 170.06 g/mol
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 N (verify) (what is: YesY/N?)
Infobox references

Dihydroxyacetone phosphate (DHAP, also glycerone phosphate in older texts) is a biochemical compound involved in many metabolic pathways, including the Calvin cycle in plants and glycolysis.

Role in glycolysis[edit]

Dihydroxyacetone phosphate lies in the glycolysis metabolic pathway, and is one of the two products of breakdown of fructose 1,6-bisphosphate, along with glyceraldehyde 3-phosphate. It is rapidly and reversibly isomerised to glyceraldehyde 3-phosphate.

β-D-fructose 1,6-bisphosphate fructose-bisphosphate aldolase D-glyceraldehyde 3-phosphate dihydroxyacetone phosphate
Beta-D-fructose-1,6-bisphosphate wpmp.png D-glyceraldehyde-3-phosphate wpmp.png + Glycerone-phosphate wpmp.png
Biochem reaction arrow reversible NNNN horiz med.png

Compound C05378 at KEGG Pathway Database. Enzyme 4.1.2.13 at KEGG Pathway Database. Compound C00111 at KEGG Pathway Database. Compound C00118 at KEGG Pathway Database.

The numbering of the carbon atoms indicates the fate of the carbons according to their position in fructose 6-phosphate.

Dihydroxyacetone phosphate triose phosphate isomerase D-glyceraldehyde 3-phosphate
Glycerone-phosphate wpmp.png   D-glyceraldehyde-3-phosphate wpmp.png
Biochem reaction arrow reversible NNNN horiz med.png
 
 

Compound C00111 at KEGG Pathway Database.Enzyme 5.3.1.1 at KEGG Pathway Database.Compound C00118 at KEGG Pathway Database.

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

[[File:
GlycolysisGluconeogenesis_WP534 go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to Entrez go to article go to article go to article go to article go to article go to WikiPathways go to article go to Entrez go to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
GlycolysisGluconeogenesis_WP534 go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to Entrez go to article go to article go to article go to article go to article go to WikiPathways go to article go to Entrez go to article
|{{{bSize}}}px|alt=Glycolysis and Gluconeogenesis edit|]]
Glycolysis and Gluconeogenesis edit
  1. ^ The interactive pathway map can be edited at WikiPathways: "GlycolysisGluconeogenesis_WP534". 

Role in other pathways[edit]

In the Calvin cycle, DHAP is one of the products of the sixfold reduction of 1,3-bisphosphoglycerate by NADPH. It is also used in the synthesis of sedoheptulose 1,7-bisphosphate and fructose 1,6-bisphosphate, both of which are used to reform ribulose 5-phosphate, the 'key' carbohydrate of the Calvin cycle.

DHAP is also the product of the dehydrogenation of L-glycerol-3-phosphate, which is part of the entry of glycerol (sourced from triglycerides) into the glycolytic pathway. Conversely, reduction of glycolysis-derived DHAP to L-glycerol-3-phosphate provides adipose cells with the activated glycerol backbone they require to synthesize new triglycerides. Both reactions are catalyzed by the enzyme glycerol 3-phosphate dehydrogenase with NAD+/NADH as cofactor.

DHAP also has a role in the ether-lipid biosynthesis process in the protozoan parasite Leishmania mexicana.

See also[edit]