Diplodocid

From Wikipedia, the free encyclopedia
  (Redirected from Diplodocidae)
Jump to: navigation, search
Diplodocids
Temporal range: Middle-Early Cretaceous, 170–136.4Ma
Berlin Diplodocus.jpg
Diplodocus carnegii skeleton cast, Berlin Hauptbahnhof
Scientific classification e
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Suborder: Sauropodomorpha
Superfamily: Diplodocoidea
(unranked): Flagellicaudata
Family: Diplodocidae
Marsh, 1884
Type species
Diplodocus longus
Marsh, 1878
Subgroups[4]
Synonyms
  • Atlantosauridae Marsh, 1877
  • Dystrophaeidae Huene, 1904
  • Apatosauridae Huene, 1927

Diplodocids, or members of the family Diplodocidae ("double beams"), are a group of sauropod dinosaurs. The family includes some of the longest creatures ever to walk the Earth, including Diplodocus and Supersaurus, which may have reached lengths of up to 34 metres (112 ft).[5]

Description[edit]

Diplodocus, depicted with spines limited to the mid-line of the back.
Cast of Toni, a juvenile diplodocid
Diplodocidae size comparison

While still massive, when compared to the titanosaurids and brachiosaurs, the diplodocids were relatively slender but extremely long. They had short legs, making them the "dachshund" of giant dinosaurs; and their rear legs were longer than front legs, giving their back a distinctive downward slope towards the neck.

In 1992, a fragmentary diplodocid specimen was described with associated keratinous (horny, not bony) spines. Their arrangement suggests that in life the spines formed a continuous line down the diplodocid's back. Since dermal tissue is rarely preserved in the fossil record it is not known how widespread the feature is, but spines may have been a common feature among diplodocids or among sauropods as a whole.[6]

Their necks were also extremely long, and according to recent computer simulations they may not have been able to lift their necks like other sauropods. However these simulations do not take vertebral cartilage into account, which would likely allow a greater range of motion. Instead of reaching up into trees, they may have used their necks to graze over a broad area. They may also have used their necks to reach into dense stands of conifers, or over marshy ground.[citation needed]

Their heads, like those of other sauropods, were tiny with the nasal openings on the top of the head (though in life the nostrils themselves would have been close to the tip of the snout). Their teeth were only present in the front of the mouth, and looked like pencils or pegs. They probably used their teeth to crop off food, without chewing, and relied on gastroliths (gizzard stones) to break down tough plant fibers (similar to modern birds).

Diplodocids also had long, whip-like tails, which were thick at the base and tapered off to be very thin at the end. Computer simulations have shown that the diplodocids could have easily snapped their tails, like a bullwhip. This could generate a sonic boom in excess of 200 decibels, and may have been used in mating displays, or to drive off predators. There is some circumstantial evidence supporting this as well: A number of diplodocids have been found with fused or damaged tail vertebrae, which may be a symptom of cracking their tails.[citation needed]

Skin[edit]

Few skin impressions of diplodocids have been found. However, at least one significant find first reported by Stephen Czerkas in 1992 preserved portions of the skin from around the tip of the tail, or "whiplash".[7] Czerkas noted that the skin preserved a sequence of conical spines, and that other, larger spines were found scattered around larger tail vertebrae. The spines appeared to be oriented in a single row along the mid-line of the tail, and Czerkas speculated that this midline row may have continued over the animal's entire back and neck.[8]

Growth[edit]

Long-bone histology enables researchers to estimate the age that a specific individual reached. A study by Griebeler et al. (2013) examined long bone histological data and concluded that the diplodocid MfN.R.2625 weighed 4,753 kilograms (5.2 short tons), reached sexual maturity at 23 years and died at age 24. The same growth model indicated that the diplodocid MfN.R.NW4 weighed 18,463 kilograms (20.4 short tons), and died at age 23, prior to reaching sexual maturity.[9]

Classification[edit]

Cast skeleton of Apatosaurus excelsus based on the University of Wyoming specimen produced by Triebold Paleontology Incorporated

Diplodocidae was the third name given to what is now recognized as the single family of long-necked, whip-tailed sauropods. Edward Drinker Cope named the family Amphicoeliidae in 1878 for his genus Amphicoelias, sometimes considered a diplodocid.[10] However, the name Amphicoeliidae did not come into wider use and was not used in the scientific literature after 1899, making it a nomen oblitum ("forgotten name") according to the ICZN, preventing it from displacing the name Diplodocidae as a senior synonym. More recent studies have also shown that Amphicoelias itself does not belong to this family, but is instead a more primitive diplodocoid.[11] A similar situation occurred for the family name Atlantosauridae, named by Othniel Charles Marsh in 1877, and which Hay argued had priority over Amphicoelidae.[12] George Olshevsky declared Atlantosauridae a nomen oblitum in 1991, though scientists such as Steel and Nowinski had treated Atlantosauridae as a valid name as late as 1971, and the former even added a subfamily, Atlantosaurinae.[13][14]

Some dinosaurs have been considered diplodocids in the past but have not been found to be members of that group in later, larger analyses of the family's relationships. Australodocus, for example, was initially described as a diplodocid, but may actually have been a Macronarian.[15][11] Amphicoelias was traditionally been considered a diplodocid due to its similar anatomy, but phylogenetic studies showed it to be a more basal member of the Diplodocoidea.[11]

The relationships of species within diplodocidae has also been subject to frequent revision. A study by Lovelace, Hartman and Wahl in 2008 found that Suuwassea and Supersaurus were relatives of Apatosaurus, within the subfamily Apatosaurinae. However, subsequent analysis by Whitlock in 2011 showed that Supersaurus is slightly closer to Diplodocus than to Apatosaurus, and that Suuwassea is actually a primitive dicraeosaurid.[11]

The subfamily Diplodocinae, was erected to include Diplodocus and its closest relatives, including Barosaurus.[16][17] The Portuguese Dinheirosaurus and the African Tornieria have also been identified as close relatives of Diplodocus by some authors.[18][19]

Cladogram of the Diplodocidae after Lovelace, Hartman, and Wahl, 2008.[5]

Diplodocidae

Apatosaurinae

Suuwassea


        

Supersaurus



Apatosaurus




Diplodocinae

Barosaurus



Diplodocus





Cladogram of the Diplodocidae after Whitlock, 2011.[11]

Diplodocidae

Apatosaurus




Supersaurus




Dinheirosaurus



Tornieria




Barosaurus



Diplodocus






21st century in paleontology 20th century in paleontology 19th century in paleontology 2090s in paleontology 2080s in paleontology 2070s in paleontology 2060s in paleontology 2050s in paleontology 2040s in paleontology 2030s in paleontology 2020s in paleontology 2010s in paleontology 2000s in paleontology 1990s in paleontology 1980s in paleontology 1970s in paleontology 1960s in paleontology 1950s in paleontology 1940s in paleontology 1930s in paleontology 1920s in paleontology 1910s in paleontology 1900s in paleontology 1890s in paleontology 1880s in paleontology 1870s in paleontology 1860s in paleontology 1850s in paleontology 1840s in paleontology 1830s in paleontology 1820s in paleontology Leinkupal Tornieria Supersaurus Kaatedocus Diplodocus Dinheirosaurus Barosaurus Eobrontosaurus Apatosaurus 21st century in paleontology 20th century in paleontology 19th century in paleontology 2090s in paleontology 2080s in paleontology 2070s in paleontology 2060s in paleontology 2050s in paleontology 2040s in paleontology 2030s in paleontology 2020s in paleontology 2010s in paleontology 2000s in paleontology 1990s in paleontology 1980s in paleontology 1970s in paleontology 1960s in paleontology 1950s in paleontology 1940s in paleontology 1930s in paleontology 1920s in paleontology 1910s in paleontology 1900s in paleontology 1890s in paleontology 1880s in paleontology 1870s in paleontology 1860s in paleontology 1850s in paleontology 1840s in paleontology 1830s in paleontology 1820s in paleontology

Distinguishing anatomical features[edit]

A diagnosis is a statement of the anatomical features of an organism (or group) that collectively distinguish it from all other organisms. Some, but not all, of the features in a diagnosis are also autapomorphies. An autapomorphy is a distinctive anatomical feature that is unique to a given organism or group.

The clade Diplodocidae is distinguished based on the following characteristics:[20]

  • nares: the external nares face dorsally; and the internarial bar is absent
  • jugal: the jugal forms a substantial part of the caudoventral margin of the antorbital fenestra
  • quadratojugal processes: the angle between the rostral quadratojugal process and the dorsal quadratojugal process is approximately 130°
  • paroccipital process: the distal end of the paroccipital process is rounded and tongue-like in shape
  • parasphenoid: the parasphenoid rostrum is a laterally compressed, thin spike and is lacking the longitudinal dorsal groove
  • pterygoid: the ectopterygoid process of the pterygoid is located below the antorbital fenestra, and is reduced, such that it is not visible below the ventral margin of the skull when examined in lateral view; also the breadth of the main body of the pterygoid at least 33% of the length of the pterygoid
  • teeth: at least 5-6 replacement teeth occur per alveolus (as observed in Nigersaurus)
  • dorsal vertebrae: no more than 10 dorsal vertebrae are present
  • caudal vertebrae: 70-80 caudal vertebrae are present
  • pedal phalanges: pedal phalanx I-1 has a proximoventral margin drawn out into a thin plate or heel that underlies the distal end of metatarsal I; also pedal phalanx II-2 is reduced in craniocaudal length and has an irregular shape

References[edit]

  1. ^ Gillette, D.D., 1996, "Stratigraphic position of the sauropod Dystrophaeus viaemalae Cope and its evolutionary implications", In: Morales, Michael, editor, The continental Jurassic, Museum of Northern Arizona Bulletin 60: 59-68
  2. ^ Taylor, M.P. (2010). "Sauropod dinosaur research: a historical review." Pp. 361-386 in Moody, R.T.J., Buffetaut, E., Naish, D. and Martill, D.E. (eds.), Dinosaurs and Other Extinct Saurians: A Historical Perspective. London: The Geological Society, Special Publication No. 34.
  3. ^ Gallina, P. A.; Apesteguía, S. N.; Haluza, A.; Canale, J. I. (2014). "A Diplodocid Sauropod Survivor from the Early Cretaceous of South America". PLoS ONE 9 (5): e97128. doi:10.1371/journal.pone.0097128.  edit
  4. ^ Holtz, Thomas R. Jr. (2012) Dinosaurs: The Most Complete, Up-to-Date Encyclopedia for Dinosaur Lovers of All Ages, Winter 2011 Appendix.
  5. ^ a b Lovelace, David M.; Hartman, Scott A.; Wahl, William R. (2007). "Morphology of a specimen of Supersaurus (Dinosauria, Sauropoda) from the Morrison Formation of Wyoming, and a re-evaluation of diplodocid phylogeny". Arquivos do Museu Nacional 65 (4): 527–544. 
  6. ^ Czerkas, S. A. (1992). Discovery of dermal spines reveals a new look for sauropod dinosaurs. Geology, 20(12), 1068-1070.
  7. ^ Czerkas, S.A. (1993). "The new look of sauropods." Journal of Vertebrate Paleontology, 13: 26A.
  8. ^ Czerkas, S.A. (1993). "Discovery of dermal spines reveals a new look for sauropod dinosaurs." Geology, 20: 1068–1070.
  9. ^ Griebeler EM, Klein N, Sander PM (2013) Aging, Maturation and Growth of Sauropodomorph Dinosaurs as Deduced from Growth Curves Using Long Bone Histological Data: An Assessment of Methodological Constraints and Solutions" PLoS ONE 8(6) e67012. doi:10.1371/journal.pone.0067012
  10. ^ Carpenter, K. (2006). "Biggest of the big: a critical re-evaluation of the mega-sauropod Amphicoelias fragillimus." In Foster, J.R. and Lucas, S.G., eds., 2006, Paleontology and Geology of the Upper Jurassic Morrison Formation. New Mexico Museum of Natural History and Science Bulletin 36: 131-138.
  11. ^ a b c d e Whitlock, J.A. (2011). "A phylogenetic analysis of Diplodocoidea (Saurischia: Sauropoda)." Zoological Journal of the Linnean Society, Article first published online: 12 Jan 2011. doi:10.1111/j.1096-3642.2010.00665.x
  12. ^ Hay, O.P. (1902). "Bibliography and Catalogue of the Fossil Vertebrata of North America." Bulletin of the United States Geological Survey, 179: 1-868.
  13. ^ Olshevsky, G. (1991). "A Revision of the Parainfraclass Archosauria Cope, 1869, Excluding the Advanced Crocodylia." Mesozoic Meanderings, 2.
  14. ^ Nowinski, A. (1971). "Nemegtosaurus mongoliensis n. gen., n. sp. (Sauropoda) from the uppermost Cretaceous of Mongolia." Palaeontologia Polonica, 25: 57-8.
  15. ^ Remes, Kristian (2007). "A second Gondwanan diplodocid dinosaur from the Upper Jurassic Tendaguru Beds of Tanzania, East Africa". Palaeontology 50 (3): 653–667. doi:10.1111/j.1475-4983.2007.00652.x. 
  16. ^ Taylor, M.P. & Naish, D. (2005). "The phylogenetic taxonomy of Diplodocoidea (Dinosauria: Sauropoda)". PaleoBios 25 (2): 1–7. ISSN 0031-0298. 
  17. ^ Harris, J.D. (2006). "The significance of Suuwassea emiliae (Dinosauria: Sauropoda) for flagellicaudatan intrarelationships and evolution". Journal of Systematic Palaeontology 4 (2): 185–198. doi:10.1017/S1477201906001805. 
  18. ^ Bonaparte, J.F. & Mateus, O. 1999. A new diplodocid, Dinheirosaurus lourinhanensis gen. et sp. nov., from the Late Jurassic beds of Portugal. Revista del Museo Argentino de Ciencias Naturales. 5(2) 13–29. (download here)
  19. ^ Rauhut, O.W.M., Remes, K., Fechner, R., Cladera, G., & Puerta, P. (2005). "Discovery of a short-necked sauropod dinosaur from the Late Jurassic period of Patagonia". Nature 435 (7042): 670–672. doi:10.1038/nature03623. PMID 15931221. 
  20. ^ Upchurch P, Barrett PM, Dodson P (2004). "Sauropoda". In Weishampel DB, Dodson P, Osmólska H. The Dinosauria (2nd Edition). University of California Press.

External links[edit]