Disdyakis dodecahedron

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Disdyakis dodecahedron
Disdyakis dodecahedron
Click on picture for large version

Spinning version

Type Catalan solid
Conway notation mC
Coxeter diagram CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png
Face polygon DU11 facets.png
scalene triangle
Faces 48
Edges 72
Vertices 26 = 6 + 8 + 12
Face configuration V4.6.8
Symmetry group Oh, BC3, [4,3], *432
Dihedral angle 155° 4' 56"
\arccos(-\frac{71 + 12\sqrt{2}}{97})
Dual polyhedron truncated cuboctahedron
Properties convex, face-transitive
Disdyakis dodecahedron
Net

In geometry, a disdyakis dodecahedron, or hexakis octahedron, is a Catalan solid and the dual to the Archimedean truncated cuboctahedron. As such it is face-transitive but with irregular face polygons. It looks a bit like an inflated rhombic dodecahedron—if one replaces each face of the rhombic dodecahedron with a single vertex and four triangles in a regular fashion one ends up with a disdyakis dodecahedron. More formally, the disdyakis dodecahedron is the Kleetope of the rhombic dodecahedron.

Symmetry[edit]

It has Oh octahedral symmetry. Its collective edges represent the reflection planes of the symmetry.

Octahedral reflection domains.png Disdyakis dodecahedron.png

Seen in stereographic projection the edges of the disdyakis dodecahedron form 9 circles (or centrally radial lines) in the plane. The 9 circles can be divided into two groups of 3 and 6 (drawn in purple and red), representing in two orthogonal subsymmetries: [2,2], and [3,3]:

Disdyakis dodecahedron stereographic D4.png Disdyakis dodecahedron stereographic D3.png Disdyakis dodecahedron stereographic D2.png
[4] [3] [2]

Dimensions[edit]

If its smallest edges have length 1, its surface area is \tfrac{6}{7}\scriptstyle{\sqrt{783+436\sqrt{2}}} and its volume is \tfrac{1}{7}\scriptstyle{\sqrt{3(2194+1513\sqrt{2})}}.

Orthogonal projections[edit]

The truncated cuboctahedron and its dual, the disdyakis dodecahedron can be drawn in a number of symmetric orthogonal projective orientations. Netween a polyhedron and its dual, certices and faces are swapped in positions, and edges are perpendicular.

Projective
symmetry
[4] [3] [2] [2] [2] [2] [2]+
Image Dual cube t012.png Dual cube t012 B2.png Dual cube t012 f4.png Dual cube t012 e46.png Dual cube t012 e48.png Dual cube t012 e68.png Dual cube t012 v.png
Dual
image
3-cube t012.svg 3-cube t012 B2.svg Cube t012 f4.png Cube t012 e46.png Cube t012 e48.png Cube t012 e68.png Cube t012 v.png

Related polyhedra and tilings[edit]

Spherical disdyakis dodecahedron

The disdyakis dodecahedron is one of a family of duals to the uniform polyhedra related to the cube and regular octahedron.

Uniform octahedral polyhedra
Symmetry: [4,3], (*432) [4,3]+
(432)
[1+,4,3] = [3,3]
(*332)
[3+,4]
(3*2)
{4,3} t{4,3} r{4,3}
r{31,1}
t{3,4}
t{31,1}
{3,4}
{31,1}
rr{4,3}
s2{3,4}
tr{4,3} sr{4,3} h{4,3}
{3,3}
h2{4,3}
t{3,3}
s{3,4}
s{31,1}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel nodes 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel nodes 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel nodes.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png =
CDel nodes 10ru.pngCDel split2.pngCDel node.png or CDel nodes 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png or CDel nodes 01rd.pngCDel split2.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png =
CDel node h.pngCDel split1.pngCDel nodes hh.png
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg
Uniform polyhedron-33-t02.png
Uniform polyhedron-43-t12.svg
Uniform polyhedron-33-t012.png
Uniform polyhedron-43-t2.svg
Uniform polyhedron-33-t1.png
Uniform polyhedron-43-t02.png
Rhombicuboctahedron uniform edge coloring.png
Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Uniform polyhedron-33-t0.pngUniform polyhedron-33-t2.png Uniform polyhedron-33-t01.pngUniform polyhedron-33-t12.png Uniform polyhedron-43-h01.svg
Uniform polyhedron-33-s012.png
Duals to uniform polyhedra
V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V34.4 V33 V3.62 V35
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 4.pngCDel node.png
CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Octahedron.svg Triakisoctahedron.jpg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Hexahedron.svg Deltoidalicositetrahedron.jpg Disdyakisdodecahedron.jpg Pentagonalicositetrahedronccw.jpg Tetrahedron.svg Triakistetrahedron.jpg POV-Ray-Dodecahedron.svg

It is a polyhedra in a sequence defined by the face configuration V4.6.2n. This group is special for having all even number of edges per vertex and form bisecting planes through the polyhedra and infinite lines in the plane, and continuing into the hyperbolic plane for any n \ge 7.

With an even number of faces at every vertex, these polyhedra and tilings can be shown by alternating two colors so all adjacent faces have different colors.

Each face on these domains also corresponds to the fundamental domain of a symmetry group with order 2,3,n mirrors at each triangle face vertex.

Dimensional family of omnitruncated polyhedra and tilings: 4.6.2n
Symmetry
*n32
[n,3]
Spherical Euclidean Compact hyperbolic Paracompact
*232
[2,3]
D3h
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
P6m
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]
Coxeter
Schläfli
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{2,3}
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{3,3}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{4,3}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{5,3}
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{6,3}
CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{7,3}
CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{8,3}
CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{∞,3}
Omnitruncated
figure
Spherical truncated trigonal prism.png Uniform tiling 332-t012.png Uniform tiling 432-t012.png Uniform tiling 532-t012.png Uniform polyhedron-63-t012.png H2 tiling 237-7.png H2 tiling 238-7.png H2 tiling 23i-7.png
Vertex figure 4.6.4 4.6.6 4.6.8 4.6.10 4.6.12 4.6.14 4.6.16 4.6.∞
Dual figures
Coxeter CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 8.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node f1.png
Omnitruncated
duals
Hexagonale bipiramide.png Tetrakishexahedron.jpg Disdyakisdodecahedron.jpg Disdyakistriacontahedron.jpg Tiling Dual Semiregular V4-6-12 Bisected Hexagonal.svg Order-3 heptakis heptagonal tiling.png Order-3 octakis octagonal tiling.png H2checkers 23i.png
Face
configuration
V4.6.4 V4.6.6 V4.6.8 V4.6.10 V4.6.12 V4.6.14 V4.6.16 V4.6.∞
Dimensional family of omnitruncated polyhedra and tilings: 4.8.2n
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolic Paracompact
*242
[2,4]
D4h
*342
[3,4]
Oh
*442
[4,4]
P4m
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]
Omnitruncated
figure
Spherical octagonal prism2.png
4.8.4
Uniform tiling 432-t012.png
4.8.6
Uniform tiling 44-t012.png
4.8.8
H2 tiling 245-7.png
4.8.10
H2 tiling 246-7.png
4.8.12
H2 tiling 247-7.png
4.8.14
H2 tiling 248-7.png
4.8.16
H2 tiling 24i-7.png
4.8.∞
Coxeter
Schläfli
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node 1.png
tr{2,4}
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
tr{3,4}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
tr{4,4}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 4.pngCDel node 1.png
tr{5,4}
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node 1.png
tr{6,4}
CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node 1.png
tr{7,4}
CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node 1.png
tr{8,4}
CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node 1.png
tr{∞,4}
Omnitruncated
duals
Hexagonale bipiramide.png
V4.8.4
Disdyakisdodecahedron.jpg
V4.8.6
Tiling Dual Semiregular V4-8-8 Tetrakis Square.svg
V4.8.8
Order-4 bisected pentagonal tiling.png
V4.8.10
Hyperbolic domains 642.png
V4.8.12
Hyperbolic domains 742.png
V4.8.14
Hyperbolic domains 842.png
V4.8.16
H2checkers 24i.png
V4.8.∞
Coxeter CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 8.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node f1.png

See also[edit]

References[edit]

  • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X.  (Section 3-9)
  • The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 [1] (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, page 285, kisRhombic dodecahedron)

External links[edit]