EP300

From Wikipedia, the free encyclopedia
Jump to: navigation, search
E1A binding protein p300
Protein EP300 PDB 1f81.png
PDB rendering based on 1f81.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols EP300 ; KAT3B; RSTS2; p300
External IDs OMIM602700 MGI1276116 HomoloGene1094 ChEMBL: 3784 GeneCards: EP300 Gene
EC number 2.3.1.48
RNA expression pattern
PBB GE EP300 202221 s at tn.png
PBB GE EP300 213579 s at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 2033 328572
Ensembl ENSG00000100393 ENSMUSG00000055024
UniProt Q09472 B2RWS6
RefSeq (mRNA) NM_001429 NM_177821
RefSeq (protein) NP_001420 NP_808489
Location (UCSC) Chr 22:
41.49 – 41.58 Mb
Chr 15:
81.59 – 81.65 Mb
PubMed search [3] [4]

E1A binding protein p300 also known as EP300 or p300 is a protein that, in humans, is encoded by the EP300 gene.[1] This protein regulates the activity of many genes in tissues throughout the body. It plays an essential role in regulating cell growth and division, prompting cells to mature and assume specialized functions (differentiate), and preventing the growth of cancerous tumors. The p300 protein appears to be critical for normal development before and after birth.

The p300 protein carries out its function by activating transcription. To be specific, p300 connects transcription factors, which are proteins that start the transcription process, with the complex of proteins that carry out transcription in the cell's nucleus. On the basis of this function, p300 is called a transcriptional coactivator. The p300 interaction with transcription factors is managed by one or more of p300 domains: the nuclear receptor interaction domain (RID), the CREB and MYB interaction domain (KIX), the cysteine/histidine regions (TAZ1/CH1 and TAZ2/CH3) and the interferon response binding domain (IBiD). The last four domains, KIX, TAZ1, TAZ2 and IBiD of p300, each bind tightly to a sequence spanning both transactivation domains 9aaTADs of transcription factor p53.[2][3]

The EP300 gene is located on the long (q) arm of the human chromosome 22 at position 13.2.

EP300 is closely related to another gene, CREB binding protein, which is found on human chromosome 16.

Function[edit]

This gene encodes the adenovirus E1A-associated cellular p300 transcriptional co-activator protein.

The protein functions as histone acetyltransferase [4] that regulates transcription via chromatin remodeling, and is important in the processes of cell proliferation and differentiation. It mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein.

This gene has also been identified as a co-activator of HIF1A (hypoxia-inducible factor 1 alpha), and, thus, plays a role in the stimulation of hypoxia-induced genes such as VEGF.[5]

Clinical significance[edit]

Mutations in the EP300 gene are responsible for a small percentage of cases of Rubinstein-Taybi syndrome. These mutations result in the loss of one copy of the gene in each cell, which reduces the amount of p300 protein by half. Some mutations lead to the production of a very short, nonfunctional version of the p300 protein, while others prevent one copy of the gene from making any protein at all. Although researchers do not know how a reduction in the amount of p300 protein leads to the specific features of Rubinstein-Taybi syndrome, it is clear that the loss of one copy of the EP300 gene disrupts normal development.

Chromosomal rearrangements involving chromosome 22 have rarely been associated with certain types of cancer. These rearrangements, called translocations, disrupt the region of chromosome 22 that contains the EP300 gene. For example, researchers have found a translocation between chromosomes 8 and 22 in several people with a cancer of blood cells called acute myeloid leukemia (AML). Another translocation, involving chromosomes 11 and 22, has been found in a small number of people who have undergone cancer treatment. This chromosomal change is associated with the development of AML following chemotherapy for other forms of cancer.

Mutations in the EP300 gene have been identified in several other types of cancer. These mutations are somatic, which means they are acquired during a person's lifetime and are present only in certain cells. Somatic mutations in the EP300 gene have been found in a small number of solid tumors, including cancers of the colon and rectum, stomach, breast, and pancreas. Studies suggest that EP300 mutations may also play a role in the development of some prostate cancers, and could help predict whether these tumors will increase in size or spread to other parts of the body. In cancer cells, EP300 mutations prevent the gene from producing any functional protein. Without p300, cells cannot effectively restrain growth and division, which can allow cancerous tumors to form.

Interactions[edit]

EP300 has been shown to interact with Mothers against decapentaplegic homolog 7,[6] MAF,[7] TSG101,[8] Peroxisome proliferator-activated receptor alpha,[9][10] NPAS2,[11] PAX6,[12] DDX5,[13] MYBL2,[14] Mothers against decapentaplegic homolog 1,[15][16] Mothers against decapentaplegic homolog 2,[17][18] Lymphoid enhancer-binding factor 1,[19] SNIP1,[20] TRERF1,[21] STAT3,[16] EID1,[22][23] RAR-related orphan receptor alpha,[24] ELK1,[25] HIF1A,[26][27] ING5,[28] Peroxisome proliferator-activated receptor gamma,[29][30] SS18,[31] TCF3,[32] Zif268,[33] Estrogen receptor alpha,[29][34][35] GPS2,[36] MyoD,[24][37] YY1,[38][39] ING4,[28] PROX1,[7] CITED1,[40] HNF1A,[41] MEF2C,[37] MEF2D,[42][43] MAML1,[44][45] Twist transcription factor,[46] PTMA,[47] IRF2,[48] DTX1,[49] Flap structure-specific endonuclease 1,[50] Myocyte-specific enhancer factor 2A,[51] CDX2,[12] BRCA1,[34][52] HNRPU,[53] STAT6,[54] CITED2,[55][56][57][58] RELA,[59][60] TGS1,[61] CEBPB,[62] Mdm2,[63] NCOA6,[64] NFATC2,[65] Thyroid hormone receptor alpha,[51] BCL3,[66] TFAP2A,[56] PCNA,[67] P53[63][68][69][70][71] and TAL1.[72]

References[edit]

  1. ^ Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB, Livingston DM (April 1994). "Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor". Genes Dev. 8 (8): 869–84. doi:10.1101/gad.8.8.869. PMID 7523245. 
  2. ^ Teufel DP, Freund SM, Bycroft M, Fersht AR (April 2007). "Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53". PNAS 104 (17): 7009–7014. doi:10.1073/pnas.0702010104. PMC 1855428. PMID 17438265. ; Piskacek S, Gregor M, Nemethova M, Grabner M, Kovarik P, Piskacek M (June 2007). "Nine-amino-acid transactivation domain: establishment and prediction utilities". Genomics 89 (6): 756–68. doi:10.1016/j.ygeno.2007.02.003. PMID 17467953. ; Piskacek M (2009-11-05). "9aaTAD is a common transactivation domain recruits multiple general coactivators TAF9, MED15, CBP/p300 and GCN5". Nature Precedings Pre-publication. doi:10.1038/npre.2009.3488.2. ; Piskacek M (2009-11-05). "9aaTADs mimic DNA to interact with a pseudo-DNA Binding Domain KIX of Med15 (Molecular Chameleons)". Nature Precedings Pre-publication. doi:10.1038/npre.2009.3939.1. ; Piskacek M; Piskacek, Martin (2009-11-20). "9aaTAD Prediction result (2006)". Nature Precedings Pre-publication. doi:10.1038/npre.2009.3984.1. 
  3. ^ The prediction for 9aaTADs (for both acidic and hydrophilic transactivation domains) is available online from ExPASy http://us.expasy.org/tools/ and EMBnet Spain http://www.es.embnet.org/Services/EMBnetAT/htdoc/9aatad/
  4. ^ Ogryzko VV et al. "The transcriptional coactivators p300 and CBP are histone acetyltransferases". Cell. 1996 87(5):953-9.[1]
  5. ^ "Entrez Gene: EP300". 
  6. ^ Grönroos, Eva; Hellman Ulf; Heldin Carl-Henrik; Ericsson Johan (September 2002). "Control of Smad7 stability by competition between acetylation and ubiquitination". Mol. Cell (United States) 10 (3): 483–93. doi:10.1016/S1097-2765(02)00639-1. ISSN 1097-2765. PMID 12408818. 
  7. ^ a b Chen, Qin; Dowhan Dennis H; Liang Dongcai; Moore David D; Overbeek Paul A (July 2002). "CREB-binding protein/p300 co-activation of crystallin gene expression". J. Biol. Chem. (United States) 277 (27): 24081–9. doi:10.1074/jbc.M201821200. ISSN 0021-9258. PMID 11943779. 
  8. ^ Sun, Z; Pan J; Hope W X; Cohen S N; Balk S P (August 1999). "Tumor susceptibility gene 101 protein represses androgen receptor transactivation and interacts with p300". Cancer (UNITED STATES) 86 (4): 689–96. doi:10.1002/(SICI)1097-0142(19990815)86:4<689::AID-CNCR19>3.0.CO;2-P. ISSN 0008-543X. PMID 10440698. 
  9. ^ Dowell, P; Ishmael J E; Avram D; Peterson V J; Nevrivy D J; Leid M (December 1997). "p300 functions as a coactivator for the peroxisome proliferator-activated receptor alpha". J. Biol. Chem. (UNITED STATES) 272 (52): 33435–43. doi:10.1074/jbc.272.52.33435. ISSN 0021-9258. PMID 9407140. 
  10. ^ Dowell, P; Ishmael J E; Avram D; Peterson V J; Nevrivy D J; Leid M (May 1999). "Identification of nuclear receptor corepressor as a peroxisome proliferator-activated receptor alpha interacting protein". J. Biol. Chem. (UNITED STATES) 274 (22): 15901–7. doi:10.1074/jbc.274.22.15901. ISSN 0021-9258. PMID 10336495. 
  11. ^ Curtis, Anne M; Seo Sang-beom; Westgate Elizabeth J; Rudic Radu Daniel; Smyth Emer M; Chakravarti Debabrata; FitzGerald Garret A; McNamara Peter (February 2004). "Histone acetyltransferase-dependent chromatin remodeling and the vascular clock". J. Biol. Chem. (United States) 279 (8): 7091–7. doi:10.1074/jbc.M311973200. ISSN 0021-9258. PMID 14645221. 
  12. ^ a b Hussain, M A; Habener J F (October 1999). "Glucagon gene transcription activation mediated by synergistic interactions of pax-6 and cdx-2 with the p300 co-activator". J. Biol. Chem. (UNITED STATES) 274 (41): 28950–7. doi:10.1074/jbc.274.41.28950. ISSN 0021-9258. PMID 10506141. 
  13. ^ Rossow, Kari L; Janknecht Ralf (January 2003). "Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300". Oncogene (England) 22 (1): 151–6. doi:10.1038/sj.onc.1206067. ISSN 0950-9232. PMID 12527917. 
  14. ^ Johnson, Lance R; Johnson Teresa K; Desler Michelle; Luster Troy A; Nowling Tamara; Lewis Robert E; Rizzino Angie (February 2002). "Effects of B-Myb on gene transcription: phosphorylation-dependent activity ans acetylation by p300". J. Biol. Chem. (United States) 277 (6): 4088–97. doi:10.1074/jbc.M105112200. ISSN 0021-9258. PMID 11733503. 
  15. ^ Pearson, K L; Hunter T; Janknecht R (December 1999). "Activation of Smad1-mediated transcription by p300/CBP". Biochim. Biophys. Acta (NETHERLANDS) 1489 (2–3): 354–64. doi:10.1016/S0167-4781(99)00166-9. ISSN 0006-3002. PMID 10673036. 
  16. ^ a b Nakashima, K; Yanagisawa M; Arakawa H; Kimura N; Hisatsune T; Kawabata M; Miyazono K; Taga T (April 1999). "Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300". Science (UNITED STATES) 284 (5413): 479–82. doi:10.1126/science.284.5413.479. ISSN 0036-8075. PMID 10205054. 
  17. ^ Wotton, D; Lo R S; Lee S; Massagué J (April 1999). "A Smad transcriptional corepressor". Cell (UNITED STATES) 97 (1): 29–39. doi:10.1016/S0092-8674(00)80712-6. ISSN 0092-8674. PMID 10199400. 
  18. ^ Pessah, M; Prunier C; Marais J; Ferrand N; Mazars A; Lallemand F; Gauthier J M; Atfi A (May 2001). "c-June interacts with the corepressor TG-interacting factor (TGIF) to suppress Smad2 transcriptional activity". Proc. Natl. Acad. Sci. U.S.A. (United States) 98 (11): 6198–203. doi:10.1073/pnas.101579798. ISSN 0027-8424. PMC 33445. PMID 11371641. 
  19. ^ Hecht, Andreas; Stemmler Marc P (February 2003). "Identification of a promoter-specific transcriptional activation domain at the C terminus of the Wnt effector protein T-cell factor 4". J. Biol. Chem. (United States) 278 (6): 3776–85. doi:10.1074/jbc.M210081200. ISSN 0021-9258. PMID 12446687. 
  20. ^ Kim, R H; Wang D, Tsang M, Martin J, Huff C, de Caestecker M P, Parks W T, Meng X, Lechleider R J, Wang T, Roberts A B (July 2000). "A novel Smad nuclear interacting protein, SNIP1, suppresses p300-dependent TGF-β signal transduction". Genes Dev. (UNITED STATES) 14 (13): 1605–16. ISSN 0890-9369. PMC 316742. PMID 10887155. 
  21. ^ Gizard, F; Lavallée B; DeWitte F; Hum D W (September 2001). "A novel zinc finger protein TReP-132 interacts with CBP/p300 to regulate human CYP11A1 gene expression". J. Biol. Chem. (United States) 276 (36): 33881–92. doi:10.1074/jbc.M100113200. ISSN 0021-9258. PMID 11349124. 
  22. ^ Miyake, S; Sellers W R; Safran M; Li X; Zhao W; Grossman S R; Gan J; DeCaprio J A; Adams P D; Kaelin W G (December 2000). "Cells Degrade a Novel Inhibitor of Differentiation with E1A-Like Properties upon Exiting the Cell Cycle". Mol. Cell. Biol. (UNITED STATES) 20 (23): 8889–902. doi:10.1128/MCB.20.23.8889-8902.2000. ISSN 0270-7306. PMC 86544. PMID 11073989. 
  23. ^ MacLellan, W R; Xiao G; Abdellatif M; Schneider M D (December 2000). "A Novel Rb- and p300-Binding Protein Inhibits Transactivation by MyoD". Mol. Cell. Biol. (UNITED STATES) 20 (23): 8903–15. doi:10.1128/MCB.20.23.8903-8915.2000. ISSN 0270-7306. PMC 86545. PMID 11073990. 
  24. ^ a b Lau, P; Bailey P; Dowhan D H; Muscat G E (January 1999). "Exogenous expression of a dominant negative RORalpha1 vector in muscle cells impairs differentiation: RORalpha1 directly interacts with p300 and myoD". Nucleic Acids Res. (ENGLAND) 27 (2): 411–20. doi:10.1093/nar/27.2.411. ISSN 0305-1048. PMC 148194. PMID 9862959. 
  25. ^ Li, Qi-Jing; Yang Shen-Hsi, Maeda Yutaka, Sladek Frances M, Sharrocks Andrew D, Martins-Green Manuela (January 2003). "MAP kinase phosphorylation-dependent activation of Elk-1 leads to activation of the co-activator p300". EMBO J. (England) 22 (2): 281–91. doi:10.1093/emboj/cdg028. ISSN 0261-4189. PMC 140103. PMID 12514134. 
  26. ^ Lando, David; Peet Daniel J; Whelan Dean A; Gorman Jeffrey J; Whitelaw Murray L (February 2002). "Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch". Science (United States) 295 (5556): 858–61. doi:10.1126/science.1068592. PMID 11823643. 
  27. ^ Freedman, Steven J; Sun Zhen-Yu J, Poy Florence, Kung Andrew L, Livingston David M, Wagner Gerhard, Eck Michael J (April 2002). "Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1α". Proc. Natl. Acad. Sci. U.S.A. (United States) 99 (8): 5367–72. doi:10.1073/pnas.082117899. ISSN 0027-8424. PMC 122775. PMID 11959990. 
  28. ^ a b Shiseki, Masayuki; Nagashima Makoto, Pedeux Remy M, Kitahama-Shiseki Mariko, Miura Koh, Okamura Shu, Onogi Hitoshi, Higashimoto Yuichiro, Appella Ettore, Yokota Jun, Harris Curtis C (May 2003). "p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity". Cancer Res. (United States) 63 (10): 2373–8. ISSN 0008-5472. PMID 12750254. 
  29. ^ a b Fajas, Lluis; Egler Viviane; Reiter Raphael; Hansen Jacob; Kristiansen Karsten; Debril Marie-Bernard; Miard Stéphanie; Auwerx Johan (December 2002). "The retinoblastoma-histone deacetylase 3 complex inhibits PPARgamma and adipocyte differentiation". Dev. Cell (United States) 3 (6): 903–10. doi:10.1016/S1534-5807(02)00360-X. ISSN 1534-5807. PMID 12479814. 
  30. ^ Kodera, Y; Takeyama K; Murayama A; Suzawa M; Masuhiro Y; Kato S (October 2000). "Ligand type-specific interactions of peroxisome proliferator-activated receptor gamma with transcriptional coactivators". J. Biol. Chem. (UNITED STATES) 275 (43): 33201–4. doi:10.1074/jbc.C000517200. ISSN 0021-9258. PMID 10944516. 
  31. ^ Eid, J E; Kung A L; Scully R; Livingston D M (September 2000). "p300 interacts with the nuclear proto-oncoprotein SYT as part of the active control of cell adhesion". Cell (UNITED STATES) 102 (6): 839–48. doi:10.1016/S0092-8674(00)00072-6. ISSN 0092-8674. PMID 11030627. 
  32. ^ Bradney, Curtis; Hjelmeland Mark; Komatsu Yasuhiko; Yoshida Minoru; Yao Tso-Pang; Zhuang Yuan (January 2003). "Regulation of E2A activities by histone acetyltransferases in B lymphocyte development". J. Biol. Chem. (United States) 278 (4): 2370–6. doi:10.1074/jbc.M211464200. ISSN 0021-9258. PMID 12435739. 
  33. ^ Silverman, E S; Du J; Williams A J; Wadgaonkar R; Drazen J M; Collins T (November 1998). "cAMP-response-element-binding-protein-binding protein (CBP) and p300 are transcriptional co-activators of early growth response factor-1 (Egr-1)". Biochem. J. (ENGLAND) 336 (Pt 1): 183–9. ISSN 0264-6021. PMC 1219856. PMID 9806899. 
  34. ^ a b Fan, Saijun; Ma Yong Xian, Wang Chenguang, Yuan Ren-Qi, Meng Qinghui, Wang Ji-An, Erdos Michael, Goldberg Itzhak D, Webb Paul, Kushner Peter J, Pestell Richard G, Rosen Eliot M (January 2002). "p300 Modulates the BRCA1 inhibition of estrogen receptor activity". Cancer Res. (United States) 62 (1): 141–51. ISSN 0008-5472. PMID 11782371. 
  35. ^ Kang, Yun Kyoung; Guermah Mohamed; Yuan Chao-Xing; Roeder Robert G (March 2002). "The TRAP/Mediator coactivator complex interacts directly with estrogen receptors α and β through the TRAP220 subunit and directly enhances estrogen receptor function in vitro". Proc. Natl. Acad. Sci. U.S.A. (United States) 99 (5): 2642–7. doi:10.1073/pnas.261715899. ISSN 0027-8424. PMC 122401. PMID 11867769. 
  36. ^ Peng, Y C; Breiding D E; Sverdrup F; Richard J; Androphy E J (July 2000). "AMF-1/Gps2 Binds p300 and Enhances Its Interaction with Papillomavirus E2 Proteins". J. Virol. (UNITED STATES) 74 (13): 5872–9. doi:10.1128/JVI.74.13.5872-5879.2000. ISSN 0022-538X. PMC 112082. PMID 10846067. 
  37. ^ a b Sartorelli, V; Huang J; Hamamori Y; Kedes L (February 1997). "Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C". Mol. Cell. Biol. (UNITED STATES) 17 (2): 1010–26. ISSN 0270-7306. PMC 231826. PMID 9001254. 
  38. ^ Yao, Y L; Yang W M; Seto E (September 2001). "Regulation of Transcription Factor YY1 by Acetylation and Deacetylation". Mol. Cell. Biol. (United States) 21 (17): 5979–91. doi:10.1128/MCB.21.17.5979-5991.2001. ISSN 0270-7306. PMC 87316. PMID 11486036. 
  39. ^ Lee, J S; Galvin K M; See R H; Eckner R; Livingston D; Moran E; Shi Y (May 1995). "Relief of YY1 transcriptional repression by adenovirus E1A is mediated by E1A-associated protein p300". Genes Dev. (UNITED STATES) 9 (10): 1188–98. doi:10.1101/gad.9.10.1188. ISSN 0890-9369. PMID 7758944. 
  40. ^ Yahata, T; de Caestecker M P; Lechleider R J; Andriole S; Roberts A B; Isselbacher K J; Shioda T (March 2000). "The MSG1 non-DNA-binding transactivator binds to the p300/CBP coactivators, enhancing their functional link to the Smad transcription factors". J. Biol. Chem. (UNITED STATES) 275 (12): 8825–34. doi:10.1074/jbc.275.12.8825. ISSN 0021-9258. PMID 10722728. 
  41. ^ Ban, Nobuhiro; Yamada Yuichiro; Someya Yoshimichi; Miyawaki Kazumasa; Ihara Yu; Hosokawa Masaya; Toyokuni Shinya; Tsuda Kinsuke; Seino Yutaka (May 2002). "Hepatocyte nuclear factor-1alpha recruits the transcriptional co-activator p300 on the GLUT2 gene promoter". Diabetes (United States) 51 (5): 1409–18. doi:10.2337/diabetes.51.5.1409. ISSN 0012-1797. PMID 11978637. 
  42. ^ Youn, H D; Grozinger C M; Liu J O (July 2000). "Calcium regulates transcriptional repression of myocyte enhancer factor 2 by histone deacetylase 4". J. Biol. Chem. (UNITED STATES) 275 (29): 22563–7. doi:10.1074/jbc.C000304200. ISSN 0021-9258. PMID 10825153. 
  43. ^ Youn, H D; Liu J O (July 2000). "Cabin1 represses MEF2-dependent Nur77 expression and T cell apoptosis by controlling association of histone deacetylases and acetylases with MEF2". Immunity (UNITED STATES) 13 (1): 85–94. doi:10.1016/S1074-7613(00)00010-8. ISSN 1074-7613. PMID 10933397. 
  44. ^ Wallberg, Annika E; Pedersen Kia; Lendahl Urban; Roeder Robert G (November 2002). "p300 and PCAF Act Cooperatively To Mediate Transcriptional Activation from Chromatin Templates by Notch Intracellular Domains In Vitro". Mol. Cell. Biol. (United States) 22 (22): 7812–9. doi:10.1128/MCB.22.22.7812-7819.2002. ISSN 0270-7306. PMC 134732. PMID 12391150. 
  45. ^ Fryer, Christy J; Lamar Elise; Turbachova Ivana; Kintner Chris; Jones Katherine A (June 2002). "Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex". Genes Dev. (United States) 16 (11): 1397–411. doi:10.1101/gad.991602. ISSN 0890-9369. PMC 186317. PMID 12050117. 
  46. ^ Hamamori, Y; Sartorelli V; Ogryzko V; Puri P L; Wu H Y; Wang J Y; Nakatani Y; Kedes L (February 1999). "Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A". Cell (UNITED STATES) 96 (3): 405–13. doi:10.1016/S0092-8674(00)80553-X. ISSN 0092-8674. PMID 10025406. 
  47. ^ Subramanian, Chitra; Hasan Sameez; Rowe Martin; Hottiger Michael; Orre Rama; Robertson Erle S (May 2002). "Epstein-Barr Virus Nuclear Antigen 3C and Prothymosin Alpha Interact with the p300 Transcriptional Coactivator at the CH1 and CH3/HAT Domains and Cooperate in Regulation of Transcription and Histone Acetylation". J. Virol. (United States) 76 (10): 4699–708. doi:10.1128/JVI.76.10.4699-4708.2002. ISSN 0022-538X. PMC 136123. PMID 11967287. 
  48. ^ Masumi, A; Ozato K (June 2001). "Coactivator p300 acetylates the interferon regulatory factor-2 in U937 cells following phorbol ester treatment". J. Biol. Chem. (United States) 276 (24): 20973–80. doi:10.1074/jbc.M101707200. ISSN 0021-9258. PMID 11304541. 
  49. ^ Yamamoto, N; Yamamoto S, Inagaki F, Kawaichi M, Fukamizu A, Kishi N, Matsuno K, Nakamura K, Weinmaster G, Okano H, Nakafuku M (November 2001). "Role of Deltex-1 as a transcriptional regulator downstream of the Notch receptor". J. Biol. Chem. (United States) 276 (48): 45031–40. doi:10.1074/jbc.M105245200. ISSN 0021-9258. PMID 11564735. 
  50. ^ Hasan, S; Stucki M; Hassa P O; Imhof R; Gehrig P; Hunziker P; Hübscher U; Hottiger M O (June 2001). "Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300". Mol. Cell (United States) 7 (6): 1221–31. doi:10.1016/S1097-2765(01)00272-6. ISSN 1097-2765. PMID 11430825. 
  51. ^ a b De Luca, Antonio; Severino Anna; De Paolis Paola; Cottone Giuliano; De Luca Luca; De Falco Maria; Porcellini Antonio; Volpe Massimo; Condorelli Gianluigi (February 2003). "p300/cAMP-response-element-binding-protein ('CREB')-binding protein (CBP) modulates co-operation between myocyte enhancer factor 2A (MEF2A) and thyroid hormone receptor-retinoid X receptor". Biochem. J. (England) 369 (Pt 3): 477–84. doi:10.1042/BJ20020057. ISSN 0264-6021. PMC 1223100. PMID 12371907. 
  52. ^ Pao, G M; Janknecht R; Ruffner H; Hunter T; Verma I M (February 2000). "CBP/p300 interact with and function as transcriptional coactivators of BRCA1". Proc. Natl. Acad. Sci. U.S.A. (UNITED STATES) 97 (3): 1020–5. doi:10.1073/pnas.97.3.1020. ISSN 0027-8424. PMC 15508. PMID 10655477. 
  53. ^ Martens, Joost H A; Verlaan Matty; Kalkhoven Eric; Dorsman Josephine C; Zantema Alt (April 2002). "Scaffold/Matrix Attachment Region Elements Interact with a p300-Scaffold Attachment Factor A Complex and Are Bound by Acetylated Nucleosomes". Mol. Cell. Biol. (United States) 22 (8): 2598–606. doi:10.1128/MCB.22.8.2598-2606.2002. ISSN 0270-7306. PMC 133732. PMID 11909954. 
  54. ^ McDonald, C; Reich N C (July 1999). "Cooperation of the transcriptional coactivators CBP and p300 with Stat6". J. Interferon Cytokine Res. (UNITED STATES) 19 (7): 711–22. doi:10.1089/107999099313550. ISSN 1079-9907. PMID 10454341. 
  55. ^ Bhattacharya, S; Michels C L; Leung M K; Arany Z P; Kung A L; Livingston D M (January 1999). "Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1". Genes Dev. (UNITED STATES) 13 (1): 64–75. doi:10.1101/gad.13.1.64. ISSN 0890-9369. PMC 316375. PMID 9887100. 
  56. ^ a b Bragança, José; Eloranta Jyrki J; Bamforth Simon D; Ibbitt J Claire; Hurst Helen C; Bhattacharya Shoumo (May 2003). "Physical and functional interactions among AP-2 transcription factors, p300/CREB-binding protein, and CITED2". J. Biol. Chem. (United States) 278 (18): 16021–9. doi:10.1074/jbc.M208144200. ISSN 0021-9258. PMID 12586840. 
  57. ^ Bragança, José; Swingler Tracey; Marques Fatima I R; Jones Tania; Eloranta Jyrki J; Hurst Helen C; Shioda Toshihiro; Bhattacharya Shoumo (March 2002). "Human CREB-binding protein/p300-interacting transactivator with ED-rich tail (CITED) 4, a new member of the CITED family, functions as a co-activator for transcription factor AP-2". J. Biol. Chem. (United States) 277 (10): 8559–65. doi:10.1074/jbc.M110850200. ISSN 0021-9258. PMID 11744733. 
  58. ^ Glenn, D J; Maurer R A (December 1999). "MRG1 binds to the LIM domain of Lhx2 and may function as a coactivator to stimulate glycoprotein hormone alpha-subunit gene expression". J. Biol. Chem. (UNITED STATES) 274 (51): 36159–67. doi:10.1074/jbc.274.51.36159. ISSN 0021-9258. PMID 10593900. 
  59. ^ Kiernan, Rosemary; Brès Vanessa; Ng Raymond W M; Coudart Marie-Pierre; El Messaoudi Selma; Sardet Claude; Jin Dong-Yan; Emiliani Stephane; Benkirane Monsef (January 2003). "Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65". J. Biol. Chem. (United States) 278 (4): 2758–66. doi:10.1074/jbc.M209572200. ISSN 0021-9258. PMID 12419806. 
  60. ^ Gerritsen, M E; Williams A J; Neish A S; Moore S; Shi Y; Collins T (April 1997). "CREB-binding protein/p300 are transcriptional coactivators of p65". Proc. Natl. Acad. Sci. U.S.A. (UNITED STATES) 94 (7): 2927–32. doi:10.1073/pnas.94.7.2927. ISSN 0027-8424. PMC 20299. PMID 9096323. 
  61. ^ Misra, Parimal; Qi Chao; Yu Songtao; Shah Sejal H; Cao Wen-Qing; Rao M Sambasiva; Thimmapaya Bayar; Zhu Yijun; Reddy Janardan K (May 2002). "Interaction of PIMT with transcriptional coactivators CBP, p300, and PBP differential role in transcriptional regulation". J. Biol. Chem. (United States) 277 (22): 20011–9. doi:10.1074/jbc.M201739200. ISSN 0021-9258. PMID 11912212. 
  62. ^ Mink, S; Haenig B; Klempnauer K H (November 1997). "Interaction and functional collaboration of p300 and C/EBPbeta". Mol. Cell. Biol. (UNITED STATES) 17 (11): 6609–17. ISSN 0270-7306. PMC 232514. PMID 9343424. 
  63. ^ a b Grossman, S R; Perez M; Kung A L; Joseph M; Mansur C; Xiao Z X; Kumar S; Howley P M; Livingston D M (October 1998). "p300/MDM2 complexes participate in MDM2-mediated p53 degradation". Mol. Cell (UNITED STATES) 2 (4): 405–15. doi:10.1016/S1097-2765(00)80140-9. ISSN 1097-2765. PMID 9809062. 
  64. ^ Ko, L; Cardona G R; Chin W W (May 2000). "Thyroid hormone receptor-binding protein, an LXXLL motif-containing protein, functions as a general coactivator". Proc. Natl. Acad. Sci. U.S.A. (UNITED STATES) 97 (11): 6212–7. doi:10.1073/pnas.97.11.6212. ISSN 0027-8424. PMC 18584. PMID 10823961. 
  65. ^ García-Rodríguez, C; Rao A (June 1998). "Nuclear Factor of Activated T Cells (NFAT)-dependent Transactivation Regulated by the Coactivators p300/CREB-binding Protein (CBP)". J. Exp. Med. (UNITED STATES) 187 (12): 2031–6. doi:10.1084/jem.187.12.2031. ISSN 0022-1007. PMC 2212364. PMID 9625762. 
  66. ^ Na, S Y; Choi J E; Kim H J; Jhun B H; Lee Y C; Lee J W (October 1999). "Bcl3, an IkappaB protein, stimulates activating protein-1 transactivation and cellular proliferation". J. Biol. Chem. (UNITED STATES) 274 (40): 28491–6. doi:10.1074/jbc.274.40.28491. ISSN 0021-9258. PMID 10497212. 
  67. ^ Hasan, S; Hassa P O; Imhof R; Hottiger M O (March 2001). "Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis". Nature (England) 410 (6826): 387–91. doi:10.1038/35066610. ISSN 0028-0836. PMID 11268218. 
  68. ^ Avantaggiati ML, Ogryzko V, Gardner K, Giordano A, Levine AS, Kelly K. "Recruitment of p300/CBP in p53-dependent signal pathways". Cell 1997 89(7):1175-84 [2]
  69. ^ An, Woojin; Kim Jaehoon; Roeder Robert G (June 2004). "Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53". Cell (United States) 117 (6): 735–48. doi:10.1016/j.cell.2004.05.009. ISSN 0092-8674. PMID 15186775. 
  70. ^ Pastorcic, M; Das H K (November 2000). "Regulation of transcription of the human presenilin-1 gene by ets transcription factors and the p53 protooncogene". J. Biol. Chem. (UNITED STATES) 275 (45): 34938–45. doi:10.1074/jbc.M005411200. ISSN 0021-9258. PMID 10942770. 
  71. ^ Livengood, Jill A; Scoggin Kirsten E S; Van Orden Karen; McBryant Steven J; Edayathumangalam Rajeswari S; Laybourn Paul J; Nyborg Jennifer K (March 2002). "p53 Transcriptional activity is mediated through the SRC1-interacting domain of CBP/p300". J. Biol. Chem. (United States) 277 (11): 9054–61. doi:10.1074/jbc.M108870200. ISSN 0021-9258. PMID 11782467. 
  72. ^ Huang, S; Qiu Y; Stein R W; Brandt S J (September 1999). "p300 functions as a transcriptional coactivator for the TAL1/SCL oncoprotein". Oncogene (ENGLAND) 18 (35): 4958–67. doi:10.1038/sj.onc.1202889. ISSN 0950-9232. PMID 10490830. 

Further reading[edit]

External links[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.