MAPK1

From Wikipedia, the free encyclopedia
  (Redirected from ERK2)
Jump to: navigation, search
Mitogen-activated protein kinase 1
Protein MAPK1 PDB 1erk.png
PDB rendering based on 1erk.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols MAPK1 ; ERK; ERK2; ERT1; MAPK2; P42MAPK; PRKM1; PRKM2; p38; p40; p41; p41mapk
External IDs OMIM176948 MGI1346858 HomoloGene37670 ChEMBL: 4040 GeneCards: MAPK1 Gene
EC number 2.7.11.24
RNA expression pattern
PBB GE MAPK1 212271 at.png
PBB GE MAPK1 208351 s at.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 5594 26413
Ensembl ENSG00000100030 ENSMUSG00000063358
UniProt P28482 P63085
RefSeq (mRNA) NM_002745 NM_001038663
RefSeq (protein) NP_002736 NP_001033752
Location (UCSC) Chr 22:
22.11 – 22.22 Mb
Chr 16:
16.98 – 17.05 Mb
PubMed search [1] [2]

Mitogen-activated protein kinase 1, also known as MAPK1, p42MAPK, and ERK2, is an enzyme that in humans is encoded by the MAPK1 gene.[1]

Function[edit]

The protein encoded by this gene is a member of the MAP kinase family. MAP kinases, also known as extracellular signal-regulated kinases (ERKs), act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. The activation of this kinase requires its phosphorylation by upstream kinases. Upon activation, this kinase translocates to the nucleus of the stimulated cells, where it phosphorylates nuclear targets. Two alternatively spliced transcript variants encoding the same protein, but differing in the UTRs, have been reported for this gene.[2]

Model organisms[edit]

Model organisms have been used in the study of MAPK1 function. A conditional knockout mouse line, called Mapk1tm1a(EUCOMM)Wtsi[9][10] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[11][12][13]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[7][14] Twenty seven tests were carried out on mutant mice and three significant abnormalities were observed.[7] No homozygous mutant embryos were identified during gestation, and therefore none survived until weaning. The remaining tests were carried out on heterozygous mutant adult mice and males had decreased circulating amylase levels.[7]

Interactions[edit]

MAPK1 has been shown to interact with TSC2,[15] PEA15,[16] DUSP1,[17][18] NEK2,[19] DUSP3,[20] STAT5A,[21][22] MAPK14,[23][24] FHL2,[25] TNIP1,[26] RPS6KA3,[27][28] RPS6KA2,[27][29] MAP2K1,[23][30][31][32][33][34] RPS6KA1,[28][29][35] PTPN7,[36][37] MKNK1,[38] CIITA,[39] TOB1,[40] Phosphatidylethanolamine binding protein 1,[31] DUSP22,[41] Myc,[42][43][44] ADAM17,[45] SORBS3,[46] ELK1,[35][47] VAV1,[48][49] HDAC4,[50] MKNK2,[38][51] MAP3K1[52] and UBR5.[35]

See also[edit]

References[edit]

  1. ^ Owaki H, Makar R, Boulton TG, Cobb MH, Geppert TD (February 1992). "Extracellular signal-regulated kinases in T cells: characterization of human ERK1 and ERK2 cDNAs". Biochem. Biophys. Res. Commun. 182 (3): 1416–22. doi:10.1016/0006-291X(92)91891-S. PMID 1540184. 
  2. ^ "Entrez Gene: MAPK1 mitogen-activated protein kinase 1". 
  3. ^ "Dysmorphology data for Mapk1". Wellcome Trust Sanger Institute. 
  4. ^ "Clinical chemistry data for Mapk1". Wellcome Trust Sanger Institute. 
  5. ^ "Salmonella infection data for Mapk1". Wellcome Trust Sanger Institute. 
  6. ^ "Citrobacter infection data for Mapk1". Wellcome Trust Sanger Institute. 
  7. ^ a b c d Gerdin, AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. 
  8. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  9. ^ "International Knockout Mouse Consortium". 
  10. ^ "Mouse Genome Informatics". 
  11. ^ Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.  edit
  12. ^ Dolgin, Elie (2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718. 
  13. ^ International Mouse Knockout Consortium; Collins, FS; Rossant, J; Wurst, W (2007). "A Mouse for All Reasons". Cell 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. 
  14. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism.". Genome Biol 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353. 
  15. ^ Ma, Li; Chen Zhenbang, Erdjument-Bromage Hediye, Tempst Paul, Pandolfi Pier Paolo (April 2005). "Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis". Cell (United States) 121 (2): 179–93. doi:10.1016/j.cell.2005.02.031. ISSN 0092-8674. PMID 15851026. 
  16. ^ Formstecher, E; Ramos J W, Fauquet M, Calderwood D A, Hsieh J C, Canton B, Nguyen X T, Barnier J V, Camonis J, Ginsberg M H, Chneiweiss H (August 2001). "PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase". Dev. Cell (United States) 1 (2): 239–50. doi:10.1016/S1534-5807(01)00035-1. ISSN 1534-5807. PMID 11702783. 
  17. ^ Slack, D N; Seternes O M; Gabrielsen M; Keyse S M (May 2001). "Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1". J. Biol. Chem. (United States) 276 (19): 16491–500. doi:10.1074/jbc.M010966200. ISSN 0021-9258. PMID 11278799. 
  18. ^ Calvisi, Diego F; Pinna Federico, Meloni Floriana, Ladu Sara, Pellegrino Rossella, Sini Marcella, Daino Lucia, Simile Maria M, De Miglio Maria R, Virdis Patrizia, Frau Maddalena, Tomasi Maria L, Seddaiu Maria A, Muroni Maria R, Feo Francesco, Pascale Rosa M (June 2008). "Dual-specificity phosphatase 1 ubiquitination in extracellular signal-regulated kinase-mediated control of growth in human hepatocellular carcinoma". Cancer Res. (United States) 68 (11): 4192–200. doi:10.1158/0008-5472.CAN-07-6157. PMID 18519678. 
  19. ^ Lou, Yang; Xie Wei; Zhang Dong-Fang; Yao Jian-hui; Luo Zhao-feng; Wang Yu-Zhen; Shi Yun-Yu; Yao Xue-Biao (August 2004). "Nek2A specifies the centrosomal localization of Erk2". Biochem. Biophys. Res. Commun. (United States) 321 (2): 495–501. doi:10.1016/j.bbrc.2004.06.171. ISSN 0006-291X. PMID 15358203. 
  20. ^ Todd, J L; Tanner K G; Denu J M (May 1999). "Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway". J. Biol. Chem. (UNITED STATES) 274 (19): 13271–80. doi:10.1074/jbc.274.19.13271. ISSN 0021-9258. PMID 10224087. 
  21. ^ Pircher, T J; Petersen H; Gustafsson J A; Haldosén L A (April 1999). "Extracellular signal-regulated kinase (ERK) interacts with signal transducer and activator of transcription (STAT) 5a". Mol. Endocrinol. (UNITED STATES) 13 (4): 555–65. doi:10.1210/me.13.4.555. ISSN 0888-8809. PMID 10194762. 
  22. ^ Dinerstein-Cali, H; Ferrag F; Kayser C; Kelly P A; Postel-Vinay M (August 2000). "Growth hormone (GH) induces the formation of protein complexes involving Stat5, Erk2, Shc and serine phosphorylated proteins". Mol. Cell. Endocrinol. (IRELAND) 166 (2): 89–99. doi:10.1016/S0303-7207(00)00277-X. ISSN 0303-7207. PMID 10996427. 
  23. ^ a b Sanz-Moreno, Victoria; Casar Berta; Crespo Piero (May 2003). "p38α Isoform Mxi2 Binds to Extracellular Signal-Regulated Kinase 1 and 2 Mitogen-Activated Protein Kinase and Regulates Its Nuclear Activity by Sustaining Its Phosphorylation Levels". Mol. Cell. Biol. (United States) 23 (9): 3079–90. doi:10.1128/MCB.23.9.3079-3090.2003. ISSN 0270-7306. PMC 153192. PMID 12697810. 
  24. ^ Tanoue, T; Maeda R; Adachi M; Nishida E (February 2001). "Identification of a docking groove on ERK and p38 MAP kinases that regulates the specificity of docking interactions". EMBO J. (England) 20 (3): 466–79. doi:10.1093/emboj/20.3.466. ISSN 0261-4189. PMC 133461. PMID 11157753. 
  25. ^ Purcell, Nicole H; Darwis Dina; Bueno Orlando F; Müller Judith M; Schüle Roland; Molkentin Jeffery D (February 2004). "Extracellular Signal-Regulated Kinase 2 Interacts with and Is Negatively Regulated by the LIM-Only Protein FHL2 in Cardiomyocytes". Mol. Cell. Biol. (United States) 24 (3): 1081–95. doi:10.1128/MCB.24.3.1081-1095.2004. ISSN 0270-7306. PMC 321437. PMID 14729955. 
  26. ^ Zhang, Shengliang; Fukushi Masaya, Hashimoto Shinichi, Gao Chongfeng, Huang Lin, Fukuyo Yayoi, Nakajima Takuma, Amagasa Teruo, Enomoto Shoji, Koike Katsuro, Miura Osamu, Yamamoto Naoki, Tsuchida Nobuo (September 2002). "A new ERK2 binding protein, Naf1, attenuates the EGF/ERK2 nuclear signaling". Biochem. Biophys. Res. Commun. (United States) 297 (1): 17–23. doi:10.1016/S0006-291X(02)02086-7. ISSN 0006-291X. PMID 12220502. 
  27. ^ a b Zhao, Y; Bjorbaek C; Moller D E (November 1996). "Regulation and interaction of pp90(rsk) isoforms with mitogen-activated protein kinases". J. Biol. Chem. (UNITED STATES) 271 (47): 29773–9. doi:10.1074/jbc.271.47.29773. ISSN 0021-9258. PMID 8939914. 
  28. ^ a b Smith, J A; Poteet-Smith C E; Malarkey K; Sturgill T W (January 1999). "Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo". J. Biol. Chem. (UNITED STATES) 274 (5): 2893–8. doi:10.1074/jbc.274.5.2893. ISSN 0021-9258. PMID 9915826. 
  29. ^ a b Roux, Philippe P; Richards Stephanie A; Blenis John (July 2003). "Phosphorylation of p90 Ribosomal S6 Kinase (RSK) Regulates Extracellular Signal-Regulated Kinase Docking and RSK Activity". Mol. Cell. Biol. (United States) 23 (14): 4796–804. doi:10.1128/MCB.23.14.4796-4804.2003. ISSN 0270-7306. PMC 162206. PMID 12832467. 
  30. ^ Robinson, Fred L; Whitehurst Angelique W; Raman Malavika; Cobb Melanie H (April 2002). "Identification of novel point mutations in ERK2 that selectively disrupt binding to MEK1". J. Biol. Chem. (United States) 277 (17): 14844–52. doi:10.1074/jbc.M107776200. ISSN 0021-9258. PMID 11823456. 
  31. ^ a b Yeung, K; Janosch P; McFerran B; Rose D W; Mischak H; Sedivy J M; Kolch W (May 2000). "Mechanism of Suppression of the Raf/MEK/Extracellular Signal-Regulated Kinase Pathway by the Raf Kinase Inhibitor Protein". Mol. Cell. Biol. (UNITED STATES) 20 (9): 3079–85. doi:10.1128/MCB.20.9.3079-3085.2000. ISSN 0270-7306. PMC 85596. PMID 10757792. 
  32. ^ Wunderlich, W; Fialka I; Teis D; Alpi A; Pfeifer A; Parton R G; Lottspeich F; Huber L A (February 2001). "A Novel 14-Kilodalton Protein Interacts with the Mitogen-Activated Protein Kinase Scaffold Mp1 on a Late Endosomal/Lysosomal Compartment". J. Cell Biol. (United States) 152 (4): 765–76. doi:10.1083/jcb.152.4.765. ISSN 0021-9525. PMC 2195784. PMID 11266467. 
  33. ^ Xu Be, Be; Stippec S; Robinson F L; Cobb M H (July 2001). "Hydrophobic as well as charged residues in both MEK1 and ERK2 are important for their proper docking". J. Biol. Chem. (United States) 276 (28): 26509–15. doi:10.1074/jbc.M102769200. ISSN 0021-9258. PMID 11352917. 
  34. ^ Chen, Z; Cobb M H (May 2001). "Regulation of stress-responsive mitogen-activated protein (MAP) kinase pathways by TAO2". J. Biol. Chem. (United States) 276 (19): 16070–5. doi:10.1074/jbc.M100681200. ISSN 0021-9258. PMID 11279118. 
  35. ^ a b c Eblen, Scott T; Kumar N Vinay; Shah Kavita; Henderson Michelle J; Watts Colin K W; Shokat Kevan M; Weber Michael J (April 2003). "Identification of novel ERK2 substrates through use of an engineered kinase and ATP analogs". J. Biol. Chem. (United States) 278 (17): 14926–35. doi:10.1074/jbc.M300485200. ISSN 0021-9258. PMID 12594221. 
  36. ^ Pettiford, S M; Herbst R (February 2000). "The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP". Oncogene (ENGLAND) 19 (7): 858–69. doi:10.1038/sj.onc.1203408. ISSN 0950-9232. PMID 10702794. 
  37. ^ Saxena, M; Williams S; Brockdorff J; Gilman J; Mustelin T (April 1999). "Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP)". J. Biol. Chem. (UNITED STATES) 274 (17): 11693–700. doi:10.1074/jbc.274.17.11693. ISSN 0021-9258. PMID 10206983. 
  38. ^ a b Waskiewicz, A J; Flynn A; Proud C G; Cooper J A (April 1997). "Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2". EMBO J. (ENGLAND) 16 (8): 1909–20. doi:10.1093/emboj/16.8.1909. ISSN 0261-4189. PMC 1169794. PMID 9155017. 
  39. ^ Voong, Lilien N; Slater Allison R; Kratovac Sebila; Cressman Drew E (April 2008). "Mitogen-activated Protein Kinase ERK1/2 Regulates the Class II Transactivator". J. Biol. Chem. (United States) 283 (14): 9031–9. doi:10.1074/jbc.M706487200. ISSN 0021-9258. PMC 2431044. PMID 18245089. 
  40. ^ Maekawa, Momoko; Nishida Eisuke; Tanoue Takuji (October 2002). "Identification of the Anti-proliferative protein Tob as a MAPK substrate". J. Biol. Chem. (United States) 277 (40): 37783–7. doi:10.1074/jbc.M204506200. ISSN 0021-9258. PMID 12151396. 
  41. ^ Aoyama, K; Nagata M; Oshima K; Matsuda T; Aoki N (July 2001). "Molecular cloning and characterization of a novel dual specificity phosphatase, LMW-DSP2, that lacks the cdc25 homology domain". J. Biol. Chem. (United States) 276 (29): 27575–83. doi:10.1074/jbc.M100408200. ISSN 0021-9258. PMID 11346645. 
  42. ^ Jin, Zhaohui; Gao Fengqin; Flagg Tammy; Deng Xingming (September 2004). "Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation". J. Biol. Chem. (United States) 279 (38): 40209–19. doi:10.1074/jbc.M404056200. ISSN 0021-9258. PMID 15210690. 
  43. ^ Gupta, S; Davis R J (October 1994). "MAP kinase binds to the NH2-terminal activation domain of c-Myc". FEBS Lett. (NETHERLANDS) 353 (3): 281–5. doi:10.1016/0014-5793(94)01052-8. ISSN 0014-5793. PMID 7957875. 
  44. ^ Tournier, C; Whitmarsh A J; Cavanagh J; Barrett T; Davis R J (July 1997). "Mitogen-activated protein kinase kinase 7 is an activator of the c-Jun NH2-terminal kinase". Proc. Natl. Acad. Sci. U.S.A. (UNITED STATES) 94 (14): 7337–42. doi:10.1073/pnas.94.14.7337. ISSN 0027-8424. PMC 23822. PMID 9207092. 
  45. ^ Díaz-Rodríguez, Elena; Montero Juan Carlos, Esparís-Ogando Azucena, Yuste Laura, Pandiella Atanasio (June 2002). "Extracellular Signal-regulated Kinase Phosphorylates Tumor Necrosis Factor α-converting Enzyme at Threonine 735: A Potential Role in Regulated Shedding". Mol. Biol. Cell (United States) 13 (6): 2031–44. doi:10.1091/mbc.01-11-0561. ISSN 1059-1524. PMC 117622. PMID 12058067. 
  46. ^ Mitsushima, Masaru; Suwa Akira; Amachi Teruo; Ueda Kazumitsu; Kioka Noriyuki (August 2004). "Extracellular signal-regulated kinase activated by epidermal growth factor and cell adhesion interacts with and phosphorylates vinexin". J. Biol. Chem. (United States) 279 (33): 34570–7. doi:10.1074/jbc.M402304200. ISSN 0021-9258. PMID 15184391. 
  47. ^ Cano, E; Hazzalin C A; Kardalinou E; Buckle R S; Mahadevan L C (November 1995). "Neither ERK nor JNK/SAPK MAP kinase subtypes are essential for histone H3/HMG-14 phosphorylation or c-fos and c-jun induction". J. Cell. Sci. (ENGLAND) 108 (11): 3599–609. ISSN 0021-9533. PMID 8586671. 
  48. ^ Song, J S; Gomez J; Stancato L F; Rivera J (October 1996). "Association of a p95 Vav-containing signaling complex with the FcepsilonRI gamma chain in the RBL-2H3 mast cell line. Evidence for a constitutive in vivo association of Vav with Grb2, Raf-1, and ERK2 in an active complex". J. Biol. Chem. (UNITED STATES) 271 (43): 26962–70. doi:10.1074/jbc.271.43.26962. ISSN 0021-9258. PMID 8900182. 
  49. ^ Lee, I S; Liu Y; Narazaki M; Hibi M; Kishimoto T; Taga T (January 1997). "Vav is associated with signal transducing molecules gp130, Grb2 and Erk2, and is tyrosine phosphorylated in response to interleukin-6". FEBS Lett. (NETHERLANDS) 401 (2–3): 133–7. doi:10.1016/S0014-5793(96)01456-1. ISSN 0014-5793. PMID 9013873. 
  50. ^ Zhou, X; Richon V M; Wang A H; Yang X J; Rifkind R A; Marks P A (December 2000). "Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic Ras". Proc. Natl. Acad. Sci. U.S.A. (UNITED STATES) 97 (26): 14329–33. doi:10.1073/pnas.250494697. ISSN 0027-8424. PMC 18918. PMID 11114188. 
  51. ^ Scheper, Gert C; Parra Josep L; Wilson Mary; Van Kollenburg Barbara; Vertegaal Alfred C O; Han Ze-Guang; Proud Christopher G (August 2003). "The N and C Termini of the Splice Variants of the Human Mitogen-Activated Protein Kinase-Interacting Kinase Mnk2 Determine Activity and Localization". Mol. Cell. Biol. (United States) 23 (16): 5692–705. doi:10.1128/MCB.23.16.5692-5705.2003. ISSN 0270-7306. PMC 166352. PMID 12897141. 
  52. ^ Karandikar, M; Xu S; Cobb M H (December 2000). "MEKK1 binds raf-1 and the ERK2 cascade components". J. Biol. Chem. (UNITED STATES) 275 (51): 40120–7. doi:10.1074/jbc.M005926200. ISSN 0021-9258. PMID 10969079. 

External links[edit]

Further reading[edit]

  • Morishima-Kawashima M, Hasegawa M, Takio K, et al. (1995). "Hyperphosphorylation of tau in PHF". Neurobiol. Aging 16 (3): 365–71; discussion 371–80. doi:10.1016/0197-4580(95)00027-C. PMID 7566346. 
  • Davis RJ (1996). "Transcriptional regulation by MAP kinases". Mol. Reprod. Dev. 42 (4): 459–67. doi:10.1002/mrd.1080420414. PMID 8607977. 
  • Peruzzi F, Gordon J, Darbinian N, Amini S (2003). "Tat-induced deregulation of neuronal differentiation and survival by nerve growth factor pathway". J. Neurovirol. 8 Suppl 2 (2): 91–6. doi:10.1080/13550280290167885. PMID 12491158. 
  • Greenway AL, Holloway G, McPhee DA, et al. (2004). "HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication". J. Biosci. 28 (3): 323–35. doi:10.1007/BF02970151. PMID 12734410. 
  • Meloche S, Pouysségur J (2007). "The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition". Oncogene 26 (22): 3227–39. doi:10.1038/sj.onc.1210414. PMID 17496918.