Ebola virus

From Wikipedia, the free encyclopedia
Jump to: navigation, search
For the genus, see Ebolavirus. For the current outbreak, see Ebola virus epidemic in West Africa.
Ebola virus
Ebola virus em.png
Virus classification
Group: Group V ((-)ssRNA)
Order: Mononegavirales
Family: Filoviridae
Genus: Ebolavirus
Species: Zaire ebolavirus
Member virus (Abbreviation)

Ebola virus (EBOV)

Ebola virus (EBOV, formerly designated Zaire ebolavirus) is the sole member of the Zaire ebolavirus species, and the most dangerous of the five known viruses within the genus Ebolavirus.[1] Four of the five known ebolaviruses cause a severe and often fatal hemorrhagic fever in humans and other mammals, known as Ebola virus disease. The virus and its species were both originally named for Zaire (now the Democratic Republic of Congo), the country where it was first described,[1] and was at first suspected to be a new "strain" of the closely related Marburg virus;[2][3] the virus (but not its species) was renamed "Ebola virus" in 2010 to avoid confusion. The species is a virological taxon species included in the genus Ebolavirus, family Filoviridae (whose members are called Filovirus[4]), order Mononegavirales.[1] The Zaire ebolavirus species is also the type species (reference or example species) for ebolavirus. Its natural reservoir is believed to be bats, particularly fruit bats, and it is primarily transmitted between humans and from animals to humans, through body fluids.

The EBOV genome is a single-stranded RNA approximately 19,000 nucleotides long. It encodes seven structural proteins: nucleoprotein (NP), polymerase cofactor (VP35), (VP40), GP, transcription activator (VP30), VP24, and RNA polymerase (L).[5]

Because of its high mortality rate, EBOV is also listed as a select agent, World Health Organization Risk Group 4 Pathogen (requiring Biosafety Level 4-equivalent containment), a U.S. National Institutes of Health/National Institute of Allergy and Infectious Diseases Category A Priority Pathogen, U.S. CDC Centers for Disease Control and Prevention Category A Bioterrorism Agent, and listed as a Biological Agent for Export Control by the Australia Group.

Structure[edit]

Phylogenetic tree comparing the Ebolavirus and Marburgvirus. Numbers indicate percent confidence of branches.

EBOV carries a negative-sense RNA genome in virions that are cylindrical/tubular, and contain viral envelope, matrix, and nucleocapsid components. The overall cylinders are generally approx. 80 nm in diameter, and having a virally encoded glycoprotein (GP) projecting as 7-10 nm long spikes from its lipid bilayer surface.[6] The cylinders are of variable length, typically 800 nm, but sometimes up to 1000 nm long. The outer viral envelope of the virion is derived by budding from domains of host cell membrane into which the GP spikes have been inserted during their biosynthesis.[citation needed] Individual GP molecules appear with spacings of about 10 nm.[citation needed] Viral proteins VP40 and VP24 are located between the envelope and the nucleocapsid (see following), in the matrix space.[7] At the center of the virion structure is the nucleocapsid, which is composed of a series of viral proteins attached to a 18–19 kb linear, negative-sense RNA without 3′-polyadenylation or 5′-capping (see following);[citation needed] the RNA is helically wound and complexed with the NP, VP35, VP30, and L proteins;[8][better source needed] this helix has a diameter of 80 nm and contains a central channel of 20–30 nm in diameter.

The overall shape of the virions after purification and visualization (e.g., by ultracentrifugation and electron microscopy, respectively) varies considerably; simple cylinders are far less prevalent than structures showing reversed direction, branches, and loops (i.e., U-, shepherd's crook-, 9- or eye bolt-shapes, or other or circular/coiled appearances), the origin of which may be in the laboratory techniques applied.[9] The characteristic "threadlike" structure is, however, a more general morphologic characteristic of filoviruses (alongside their GP-decorated viral envelope, RNA nucleocapsid, etc.).[9]

Genome[edit]

Each virion contains one molecule of linear, single-stranded, negative-sense RNA, 18,959 to 18,961 nucleotides in length. The 3′ terminus is not polyadenylated and the 5′ end is not capped. This viral genome codes for seven structural proteins and one non-structural protein. The gene order is 3′ – leader – NP – VP35 – VP40 – GP/sGP – VP30 – VP24 – L – trailer – 5′; with the leader and trailer being non-transcribed regions, which carry important signals to control transcription, replication, and packaging of the viral genomes into new virions. Sections of the NP, VP35 and the L genes from filoviruses have been identified as endogenous in the genomes of several groups of small mammals.[10][11][12]

It was found that 472 nucleotides from the 3' end and 731 nucleotides from the 5' end are sufficient for replication of a viral "minigenome", though not sufficient for infection.[9] The minigenome's genetic material by itself is not infectious, because viral proteins, among them the RNA-dependent RNA polymerase, are necessary to transcribe the viral genome into mRNAs because it is a negative sense RNA virus, as well as for replication of the viral genome.

Entry[edit]

There are two candidates for host cell entry proteins. The first is the host-encoded Niemann–Pick C1 (NPC1), a cholesterol transporter protein, appears to be essential for entry of Ebola virions into the host cell, and for its ultimate replication.[13][14] In one study, mice that were heterozygous for NPC1 were shown to be protected from lethal challenge with mouse-adapted Ebola virus.[ambiguous][jargon][13] In another study, small molecules were shown to inhibit Ebola virus infection by preventing viral envelope glycoprotein (GP) from binding to NPC1.[14][15] Hence, NPC1 was shown to be critical to entry of this filovirus, because it mediates infection by binding directly to viral GP.[14]

When cells from Niemann Pick Type C patients lacking this transporter were exposed to Ebola virus in the laboratory, the cells survived and appeared impervious to the virus, further indicating that Ebola relies on NPC1 to enter cells;[citation needed] mutations in the NPC1 gene in humans were conjectured as a possible mode to make some individuals resistant to this deadly viral disease.[citation needed][speculation?] The same studies[which?] described similar results regarding NPC1's role in virus entry for Marburg virus, a related filovirus. A further study has also presented evidence that NPC1 is critical receptor mediating Ebola infection via its direct binding to the viral GP, and that it is the second "lysosomal" domain of NPC1 that mediates this binding.[16]

The second candidate is TIM-1 (aka HAVCR1).[17] TIM-1 was shown to bind to the receptor binding domain of the EBOV glycoprotein, to increase the receptivity of Vero cells. Silencing its effect with siRNA prevented infection of Vero cells. TIM1 is expressed in tissues known to be seriously impacted by EBOV lysis (trachea, cornea, and conjunctiva). A monoclonal antibody against the IgV domain of TIM-1, ARD5, blocked EBOV binding and infection.

Together, these studies suggest NPC1 and TIM-1 may be potential therapeutic targets for an Ebola anti-viral drug and as a basis for a rapid field diagnostic assay.[citation needed]

Replication[edit]

Being acellular, viruses such as Ebola do not replicate through any type of cell division; rather, they use a combination of host- and virally encoded enzymes, alongside host cell structures, to produce multiple copies of themselves; these then self-assemble into viral macromolecular structures in the host cell.[8][better source needed] The virus completes a set of steps when infecting each individual cell:[citation needed]

The virus begins its attack by attaching to host receptors through the glycoprotein (GP) surface peplomer and is endocytosed into macropinosomes in the host cell.[18][non-primary source needed] To penetrate the cell, the viral membrane fuses with vesicle membrane, and the nucleocapsid is released into the cytoplasm. Encapsidated, negative-sense genomic ssRNA is used as a template for the synthesis (3'-5') of polyadenylated, monocistronic mRNAs[jargon] and, using the host cell's ribosomes, tRNA molecules, etc., the mRNA is translated into individual viral proteins.

These viral proteins are processed, a glycoprotein precursor (GP0) is cleaved to GP1 and GP2, which are then heavily glycosylated using cellular enzymes and substrates. These two molecules assemble, first into heterodimers, and then into trimers to give the surface peplomers. Secreted glycoprotein (sGP) precursor is cleaved to sGP and delta peptide, both of which are released from the cell.[citation needed] As viral protein levels rise, a switch occurs from translation to replication. Using the negative-sense genomic RNA as a template, a complementary +ssRNA is synthesized; this is then used as a template for the synthesis of new genomic (-)ssRNA, which is rapidly encapsidated.

The newly formed nucleocapsids and envelope proteins associate at the host cell's plasma membrane; budding occurs, destroying the cell.

Ecology[edit]

Ebolavirus is a zoonotic pathogen. Intermediary hosts have been reported to be "various species of fruit bats ... throughout central and sub-Saharan Africa", but infection in bats has not been proven yet.[19] End hosts are humans and great apes, infected through bat contact or through other end hosts. Pigs on the Philippine islands have been reported to be infected with Restonvirus, so other interim or amplifying hosts may exist.[19]

Ebola virus disease[edit]

Main article: Ebola virus disease

Ebola virus is one of the four ebolaviruses known to cause disease in humans. It has the highest case-fatality rate of these ebolaviruses, averaging 83% since first described in 1976, although fatality rates up to 90% have been recorded in one epidemic (2002–03). There have also been more outbreaks of ebola virus than of any other ebolavirus. The first outbreak occurred on 26 August 1976 in Yambuku.[20] The first recorded case was Mabalo Lokela, a 44‑year-old schoolteacher. The symptoms resembled malaria, and subsequent patients received quinine. Transmission has been attributed to reuse of unsterilized needles and close personal contact, body fluids and places where the person has touched.

History[edit]

Zaire ebolavirus is pronounced /zɑːˈɪər iːˈboʊləvaɪərəs/ (zah-EER ee-BOH-lə-vy-rəs). Strictly speaking, the pronunciation of "Ebola virus" (/iːˌboʊlə ˈvaɪərəs/) should be distinct from that of the genus-level taxonomic designation "ebolavirus/Ebolavirus/ebolavirus", as "Ebola" is named for the tributary of the Congo River that is pronounced "Ébola" in French,[21] whereas "ebola-virus" is an "artificial contraction" of the words "Ebola" and "virus," written without a diacritical mark for ease of use by scientific databases and English speakers. According to the rules for taxon naming established by the International Committee on Taxonomy of Viruses (ICTV), the name Zaire ebolavirus is always to be capitalized, italicized, and to be preceded by the word "species". The names of its members (Zaire ebolaviruses) are to be capitalized, are not italicized, and used without articles.[1]

Ebola virus (abbreviated EBOV) was first described in 1976.[2][3][22] Today, the International Committee on Taxonomy of Viruses lists the virus as the single member of the species Zaire ebolavirus, which is included into the genus Ebolavirus, family Filoviridae, order Mononegavirales. The name Ebola virus is derived from the Ebola River — a river that was at first thought to be in close proximity to the area in Democratic Republic of Congo, previously called Zaire, where the first recorded Ebola virus disease outbreak occurred — and the taxonomic suffix virus.[1]

The species was introduced in 1998 as Zaire Ebola virus.[23][24] In 2002, the name was changed to Zaire ebolavirus.[25][26]

Previous names[edit]

Ebola virus was first introduced as a possible new "strain" of Marburg virus in 1977 by two different research teams.[2][3] At the same time, a third team introduced the name Ebola virus.[22] In 2000, the virus name was changed to Zaire Ebola virus,[27][28] and in 2002 to Zaire ebolavirus.[25][26] However, most scientific articles continued to refer to Ebola virus or used the terms Ebola virus and Zaire ebolavirus in parallel. Consequently, in 2010, the name Ebola virus was reinstated.[1] Previous abbreviations for the virus were EBOV-Z (for Ebola virus Zaire) and most recently ZEBOV (for Zaire Ebola virus or Zaire ebolavirus). In 2010, EBOV was reinstated as the abbreviation for the virus.[1]

Species inclusion criteria[edit]

To be considered a member of the species Zaire ebolavirus, a virus of the genus Ebolavirus is required to fulfill certain requirements:[1]

Furthermore, the virus' genome cannot diverge from that of the variant Mayinga (EBOV/May) by more than 10% at the nucleotide level for it to be considered an Ebola virus.[1]

Ebola in literature[edit]

Richard Preston's 1995 best-selling book, The Hot Zone, dramatized the Ebola outbreak in Reston, Virginia.[29]

William Close's 1995 Ebola: A Documentary Novel of Its First Explosion and 2002 Ebola: Through the Eyes of the People focused on individuals' reactions to the 1976 Ebola outbreak in Zaire.[30]

Tom Clancy's 1996 novel, Executive Orders, involves a Middle Eastern terrorist attack on the United States using an airborne form of a deadly Ebola virus strain named "Ebola Mayinga" (see Mayinga N'Seka).[31]

References[edit]

  1. ^ a b c d e f g h i Kuhn, Jens H.; Becker, Stephan; Ebihara, Hideki; Geisbert, Thomas W.; Johnson, Karl M.; Kawaoka, Yoshihiro; Lipkin, W. Ian; Negredo, Ana I et al. (2010). "Proposal for a revised taxonomy of the family Filoviridae: Classification, names of taxa and viruses, and virus abbreviations". Archives of Virology 155 (12): 2083–103. doi:10.1007/s00705-010-0814-x. PMC 3074192. PMID 21046175. 
  2. ^ a b c Pattyn, S.; Jacob, W.; van der Groen, G.; Piot, P.; Courteille, G. (1977). "Isolation of Marburg-like virus from a case of haemorrhagic fever in Zaire". Lancet 309 (8011): 573–4. doi:10.1016/s0140-6736(77)92002-5. PMID 65663. 
  3. ^ a b c Bowen, E. T. W.; Lloyd, G.; Harris, W. J.; Platt, G. S.; Baskerville, A.; Vella, E. E. (1977). "Viral haemorrhagic fever in southern Sudan and northern Zaire. Preliminary studies on the aetiological agent". Lancet 309 (8011): 571–3. doi:10.1016/s0140-6736(77)92001-3. PMID 65662. 
  4. ^ WHO. "Ebola virus disease". 
  5. ^ Nanbo, Asuka; Watanabe, Shinji; Halfmann, Peter; Kawaoka, Yoshihiro (4 Feb 2013). "The spatio-temporal distribution dynamics of Ebola virus proteins and RNA in infected cells". Nature. doi:10.1038/srep01206. 
  6. ^ Klenk & Feldmann 2004, p. 28.
  7. ^ Feldmann, H. K. (1993). "Molecular biology and evolution of filoviruses". Archives of virology. Supplementum 7: 81–100. ISSN 0939-1983. PMID 8219816.  edit
  8. ^ a b Biomarker Database. Ebola virus. Korea National Institute of Health. Retrieved 2009-05-31. 
  9. ^ a b c Klenk, H-D; Feldmann, H (editor) (2004). Ebola and Marburg Viruses: Molecular and Cellular Biology. Horizon Bioscience. ISBN 978-1-904933-49-6. 
  10. ^ Taylor, D.; Leach, R.; Bruenn, J. (2010). "Filoviruses are ancient and integrated into mammalian genomes". BMC Evolutionary Biology 10: 193. doi:10.1186/1471-2148-10-193. PMC 2906475. PMID 20569424.  edit
  11. ^ Belyi, V. A.; Levine, A. J.; Skalka, A. M. (2010). "Unexpected Inheritance: Multiple Integrations of Ancient Bornavirus and Ebolavirus/Marburgvirus Sequences in Vertebrate Genomes". In Buchmeier, Michael J. PLoS Pathogens 6 (7): e1001030. doi:10.1371/journal.ppat.1001030. PMC 2912400. PMID 20686665.  edit
  12. ^ Taylor, D. J.; Ballinger, M. J.; Zhan, J. J.; Hanzly, L. E.; Bruenn, J. A. (2014). "Evidence that ebolaviruses and cuevaviruses have been diverging from marburgviruses since the Miocene". PeerJ 2: e556. doi:10.7717/peerj.556.  edit
  13. ^ a b Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, Griffin AM, Ruthel G, Dal Cin P, Dye JM, Whelan SP, Chandran K, Brummelkamp TR (September 2011). "Ebola virus entry requires the cholesterol transporter Niemann-Pick C1". Nature 477 (7364): 340–3. doi:10.1038/nature10348. PMC 3175325. PMID 21866103. Lay summaryNew York Times. 
  14. ^ a b c Côté M, Misasi J, Ren T, Bruchez A, Lee K, Filone CM, Hensley L, Li Q, Ory D, Chandran K, Cunningham J (September 2011). "Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection". Nature 477 (7364): 344–8. doi:10.1038/nature10380. PMC 3230319. PMID 21866101. Lay summaryNew York Times. 
  15. ^ Flemming A (October 2011). "Achilles heel of Ebola viral entry". Nat Rev Drug Discov 10 (10): 731. doi:10.1038/nrd3568. PMID 21959282. 
  16. ^ Miller EH, Obernosterer G, Raaben M, Herbert AS, Deffieu MS, Krishnan A, Ndungo E, Sandesara RG, Carette JE, Kuehne AI, Ruthel G, Pfeffer SR, Dye JM, Whelan SP, Brummelkamp TR, Chandran K (March 2012). "Ebola virus entry requires the host-programmed recognition of an intracellular receptor". EMBO Journal 31 (8): 1947–60. doi:10.1038/emboj.2012.53. PMC 3343336. PMID 22395071. 
  17. ^ Kondratowicz AS, Lennemann NJ, Sinn PL, et al. (May 2011). "T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus". Proc. Natl. Acad. Sci. U.S.A. 108 (20): 8426–31. doi:10.1073/pnas.1019030108. PMC 3100998. PMID 21536871. 
  18. ^ Saeed, M. F.; Kolokoltsov, A. A.; Albrecht, T.; Davey, R. A. (2010). "Cellular Entry of Ebola Virus Involves Uptake by a Macropinocytosis-Like Mechanism and Subsequent Trafficking through Early and Late Endosomes". In Basler, Christopher F. PLoS Pathogens 6 (9): e1001110. doi:10.1371/journal.ppat.1001110. PMC 2940741. PMID 20862315.  edit
  19. ^ a b Feldmann H (May 2014). "Ebola — A Growing Threat?". N. Engl. J. Med. doi:10.1056/NEJMp1405314. PMID 24805988. 
  20. ^ Isaacson, M; Sureau, P; Courteille, G; Pattyn, SR;. Clinical Aspects of Ebola Virus Disease at the Ngaliema Hospital, Kinshasa, Zaire, 1976. Retrieved 2014-06-24. 
  21. ^ Brown, Rob (18 July 2014) The virus detective who discovered Ebola in 1976 BBC News Magazine, Retrieved 18 July 2014
  22. ^ a b Johnson, K. M.; Webb, P. A.; Lange, J. V.; Murphy, F. A. (1977). "Isolation and partial characterisation of a new virus causing haemorrhagic fever in Zambia". Lancet 309 (8011): 569–71. doi:10.1016/s0140-6736(77)92000-1. PMID 65661. 
  23. ^ Netesov, S. V.; Feldmann, H.; Jahrling, P. B.; Klenk, H. D.; Sanchez, A. (2000). "Family Filoviridae". In van Regenmortel, M. H. V.; Fauquet, C. M.; Bishop, D. H. L.; Carstens, E. B.; Estes, M. K.; Lemon, S. M.; Maniloff, J.; Mayo, M. A.; McGeoch, D. J. Virus Taxonomy—Seventh Report of the International Committee on Taxonomy of Viruses. San Diego, USA: Academic Press. pp. 539–48. ISBN 0-12-370200-3. 
  24. ^ Pringle, C. R. (1998). "Virus taxonomy-San Diego 1998". Archives of Virology 143 (7): 1449–59. doi:10.1007/s007050050389. PMID 9742051. 
  25. ^ a b Feldmann, H.; Geisbert, T. W.; Jahrling, P. B.; Klenk, H.-D.; Netesov, S. V.; Peters, C. J.; Sanchez, A.; Swanepoel, R. et al. (2005). "Family Filoviridae". In Fauquet, C. M.; Mayo, M. A.; Maniloff, J.; Desselberger, U.; Ball, L. A. Virus Taxonomy—Eighth Report of the International Committee on Taxonomy of Viruses. San Diego, USA: Elsevier/Academic Press. pp. 645–653. ISBN 0-12-249951-4. 
  26. ^ a b Mayo, M. A. (2002). "ICTV at the Paris ICV: results of the plenary session and the binomial ballot". Archives of Virology 147 (11): 2254–60. doi:10.1007/s007050200052. 
  27. ^ Netesov, S. V.; Feldmann, H.; Jahrling, P. B.; Klenk, H. D.; Sanchez, A. (2000). "Family Filoviridae". In van Regenmortel, M. H. V.; Fauquet, C. M.; Bishop, D. H. L.; Carstens, E. B.; Estes, M. K.; Lemon, S. M.; Maniloff, J.; Mayo, M. A.; McGeoch, D. J.; Pringle, C. R.; Wickner, R. B. Virus Taxonomy—Seventh Report of the International Committee on Taxonomy of Viruses. San Diego, USA: Academic Press. pp. 539–48. ISBN 0-12-370200-3{{inconsistent citations}} 
  28. ^ Pringle, C. R. (1998). "Virus taxonomy-San Diego 1998". Archives of Virology 143 (7): 1449–59. doi:10.1007/s007050050389. PMID 9742051. 
  29. ^ (1) Preston, Richard (1995). The Hot Zone, A Terrifying True Story. Anchor Books. ISBN 0-385-47956-5. OCLC 32052009.  At Google Books.
    (2) "Best Sellers: June 4, 1995". The New York Times Book Review (New York: The New York Times). 1995-06-04. Retrieved 2014-09-10. 
    (3) "About The Hot Zone". Random House. Retrieved 2014-09-10. 
  30. ^ (1) Close, William T. (1995). Ebola: A Documentary Novel of Its First Explosion. New York: Ivy Books. ISBN 0804114323. OCLC 32753758.  At Google Books.
    (2) Grove, Ryan (2006-06-02). "More about the people than the virus". Review of Close, William T., Ebola: A Documentary Novel of Its First Explosion. Amazon.com. Retrieved 2014-09-17. 
    (3) Close, William T. (2002). Ebola: Through the Eyes of the People. Marbleton, Wyoming: Meadowlark Springs Productions. ISBN 0970337116. OCLC 49193962.  At Google Books.
    (4) Pink, Brenda (2008-06-24). "A fascinating perspective". Review of Close, William T., Ebola: Through the Eyes of the People. Amazon.com. Retrieved 2014-09-17. 
  31. ^ (1) Clancy, Tom (1996). Executive Orders. New York: Putnam. ISBN 0399142185. OCLC 34878804.  At Google Books.
    (2) Line, Matt; Jeremy; Dan. "Executive Orders book reviews". AllReaders.com. Archived from the original on 20014-08-01. Retrieved 2014-09-10. 
    (3) Stone, Oliver (1996-09-02). "Who's That in the Oval Office?". Books News & Reviews. The New York Times Company. Archived from the original on 2009-04-10. Retrieved 2014-09-10. 

Citations

  • Klenk, Hans-Dieter; Feldmann, Heinz (2004). Ebola and Marburg Viruses – Molecular and Cellular Biology. Wymondham, Norfolk, UK: Horizon Bioscience. ISBN 978-0-9545232-3-7. 

External links[edit]