Elysia chlorotica

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Elysia chlorotica
Elysia chlorotica.jpg
Picture of Elysia chlorotica from 1870's book.
Conservation status
Not evaluated (IUCN 3.1)
Scientific classification
Kingdom: Animalia
Phylum: Mollusca
Class: Gastropoda
(unranked): clade Heterobranchia

clade Euthyneura
clade Panpulmonata
clade Sacoglossa
clade Plakobranchacea

Superfamily: Plakobranchoidea
Family: Plakobranchidae
Genus: Elysia
Species: E. chlorotica
Binomial name
Elysia chlorotica
Gould, 1870

Elysia chlorotica, common name the eastern emerald elysia, is a small-to-medium-sized species of green sea slug, a marine opisthobranch gastropod mollusc. This sea slug superficially resembles a nudibranch, yet it does not belong to that clade of gastropods. Instead it is a member of the clade Sacoglossa, the sap-sucking sea slugs. Some members of this group use chloroplasts from the algae they eat; a phenomenon known as kleptoplasty. Elysia chlorotica is one of the "solar-powered sea slugs", utilizing solar energy via chloroplasts from its algal food. It lives in a subcellular endosymbiotic relationship with chloroplasts of the marine heterokont alga Vaucheria litorea.

Distribution[edit]

Elysia chlorotica can be found along the east coast of the United States, including the states of Massachusetts, Connecticut, New York, New Jersey, Maryland, Florida (east Florida and west Florida) and Texas. They can also be found as far north as Nova Scotia, Canada.[1]

Ecology[edit]

This species is most commonly found in salt marshes, tidal marshes, pools and shallow creeks, at depths of 0 m to 0.5 m.[1]

Description[edit]

Adult Elysia chlorotica are usually bright green in colour, due to the presence of Vaucheria litorea chloroplasts in the cells of the slug's digestive diverticula. Since the slug does not have a protective shell or any other means of protection, the slug also uses the green color obtained from the algae as a camouflage against predators.[2] By taking on the green color from the chloroplasts of the algal cells, the slugs are able to blend in with the green sea bed beneath them, helping them improve their chances of survival and fitness. However, they can occasionally appear reddish or greyish in colour, thought to depend on the amount of chlorophyll in the branches of the digestive gland which ramify throughout the body.[3] This reddish-brown color is most often associated with juveniles since they are usually this color before they begin feeding on algae. This reddish color in turn could potentially harm the juvenile since they can easily be seen by predators, making them less likely to make it to adult-hood. This species can also have very small red or white spots scattered over the body.[3] A juvenile, prior to feeding, is brown with red pigment spots due to the absence of chloroplasts.[4] Elysia chlorotica have a typical elysiid shape with large lateral parapodia which can fold over to enclose the body. Elysia chlorotica can grow up to 60 mm in length but are more commonly found between 20 mm to 30 mm in length.[4]

Feeding[edit]

Elysia chlorotica feeds on the intertidal algae Vaucheria litorea by puncturing the algal cell wall with its radula. The slug then holds the algal strand firmly in its mouth and, as though it were a straw, sucks out the contents.[4] Instead of digesting the entire cell contents, or passing the contents through its gut unscathed, it retains only the algal chloroplasts, by storing them within its own cells throughout its extensive digestive system. The acquisition of chloroplasts begins immediately following metamorphosis from the veliger stage when the juvenile sea slugs begin to feed on the Vaucheria litorea cells.[5] Juvenile slugs are brown with red pigment spots until they feed upon the algae, at which point they become green. This is caused by the distribution of the chloroplasts throughout the extensively branched gut.[4] Initially, the slug needs to continually feed upon algae to retain the chloroplasts, but over time the chloroplasts become more stably incorporated into the cells of the gut enabling the slug to remain green without further feeding. Some Elysia chlorotica slugs have even been known to be able to use photosynthesis for up to a year after only a few feedings.

The chloroplasts of the algae are incorporated into the cell through a process known as phagocytosis in which the cells of the sea slug engulf the cells of the algae and make the chloroplasts apart of its own cellular content. The incorporation of chloroplasts within the cells of Elysia chlorotica allows the slug to capture energy directly from light, as most plants do, through the process known as photosynthesis. Photosynthesis is a chemical process that harnesses sunlight and allows it to be used as an energy source for organisms. This process was once believed to be exclusive to plants, but the discovery of organisms such as Elysia chlorotica has challenged that theory. It was once thought that Elysia chlorotica could, during time periods where algae is not readily available as a food supply, survive for months on the sugars produced through photosynthesis performed by their own chloroplasts.[6] Since then it has been found that the chloroplasts can survive and function for up to nine or even ten months.

However further study on several similar species showed these sea slugs do just as well when they are deprived of light. Sven Gould from Heinrich-Heine University in Düsseldorf and his colleagues showed that even when photosynthesis was blocked, the slugs could survive without food for a long time, and seemed to fare just as well as food-deprived slugs exposed to light. They starved six specimens of P. ocellatus for 55 days, keeping two in the dark, treating two with the drug, and providing two with appropriate light. All survived and all lost weight at about the same rate. The authors also denied food to six specimens of E. timida and kept them in complete darkness for 88 days — and all survived. (E. timida slugs are too small to be weighed reliably, but at the end of the test, those that were light-deprived seemed to be as healthy as the controls.[7]

In another study, it was shown that "E. chlorotica" definitely have a way to support the survival of their chloroplasts. After the eight-month period, despite the fact that the Elysia chlorotica were less green and more yellowish in colour, the majority of the chloroplasts within the slugs appeared to have remained intact and also maintaining their fine structure.[5] By spending less energy on activities such as finding food, the slugs can invest this precious energy into other important activities. Although Elysia chlorotica are unable to synthesize their own chloroplasts, the ability to maintain the chloroplasts acquired from Vaucheria litorea in a functional state indicates that Elysia chlorotica must possess photosynthesis-supporting genes within its own nuclear genome, most likely acquired through horizontal gene transfer.[6] Since chloroplast DNA alone encodes for just 10% of the proteins required for proper photosynthesis, scientists investigated the Elysia chlorotica genome for potential genes that could support chloroplast survival and photosynthesis. The researchers found a vital algal gene, psbO (a nuclear gene encoding for a manganese-stabilizing protein within the photosystem II complex[6]) in the sea slug's DNA, identical to the algal version. They concluded that the gene was likely to have been acquired through horizontal gene transfer, as it was already present in the eggs and sex cells of Elysia chlorotica.[8] It is due to this ability to utilize horizontal gene transfer that the chloroplasts are able to be used as efficiently as they have been. If an organism did not incorporate the chloroplasts into its own cells and genome, the algal cells would need to be fed upon more often due to a lack of efficiency in the use and preservation of the chloroplasts. This once again leads to a conservation of energy, as stated earlier, allowing the slugs to focus on more important activities such as mating and avoiding predation.

More recent analyses, however, were unable to identify any actively expressed algal nuclear genes in Elysia cholorotica, or in the similar species Elysia timida and Plankobranchus ocellatus. [9][10] These results weaken support for the horizontal gene transfer hypothesis.[10]

The exact mechanism allowing for the longevity of chloroplasts once captured by Elysia cholorotica, despite its lack of active algal nuclear genes, remains unknown. However, some light has been shed on Elysia timida and its algal food.[11] Genomic analysis of Acetabularia acetabulum and Vaucheria litorea, the primary food sources of Elysia timida, has revealed that their chloroplasts produce ftsH, another protein essential for photosystem II repair. In land plants, this gene is always encoded in the nucleus, but is present in the chloroplasts of most algae. An ample supply of ftsH could in principle contribute greatly to the observed kleptoplast longevity in Elysia cholorotica and Elysia timida. [11]

Life cycle[edit]

Adult Elysia chlorotica are simultaneous hermaphrodites. When sexually mature, each animal produces both sperm and eggs at the same time. However, self-fertilization is not common within this species. Instead, Elysia chlorotica cross-copulate. After the eggs have been fertilized within the slug (fertilization is internal), Elysia chlorotica lay their fertilized eggs in long strings.[4]

Cleavage[edit]

In the life cycle of Elysia chlorotica, cleavage is holoblastic and spiral. This means that the eggs cleave completely (holoblastic); and each cleavage plane is at an oblique angle to the animal-vegetal axis of the egg. The result of this is that tiers of cells are produced, each tier lying in the furrows between cells of the tier below it. At the end of cleavage, the embryo forms a stereoblastula, meaning a blastula without a clear central cavity.[4]

Gastrulation[edit]

Elysia chlorotica gastrulation is by epiboly: the ectoderm spreads to envelope the mesoderm and endoderm.[4]

Larval stage[edit]

After the embryo passes through a trochophore-like stage during development, it then hatches as a veliger larva.[4] The veliger larva has a shell and ciliated velum. The larva uses the ciliated velum to swim as well as to bring food to its mouth. The veliger larva feed on phytoplankton in the sea-water column. After the food is brought to the mouth by the ciliated velum, it is moved down the digestive tract to the stomach. In the stomach, food is sorted and then moved on to the digestive gland where the food is digested and the nutrients are absorbed by the epithelial cells of the digestive gland.[4][12][13]

See also[edit]

References[edit]

  1. ^ a b Rosenberg, G. (2009). "Malacolog 4.1.1: A Database of Western Atlantic Marine Mollusca". Elysia chlorotica Gould, 1870. Retrieved 5 April 2010. 
  2. ^ name="Rumpho,Summer, and Manhart. "Solar-Powered Sea Slugs. Mollusc/Algal Chloroplast Symbiosis." Plant Physiology.May 2000.
  3. ^ a b Rudman, W.B. (2005). Elysia chlorotica Gould, 1870. [In] Sea Slug Forum. Australian Museum, Sydney
  4. ^ a b c d e f g h i Rumpho-Kennedy, M.E., Tyler, M., Dastoor, F.P., Worful, J., Kozlowski, R., & Tyler, M. (2006). Symbio: a look into the life of a solar-powered sea slug. Retrieved June 8, 2014, from https://web.archive.org/web/20110918070141/http://sbe.umaine.edu/symbio/index.html
  5. ^ a b Mujer, C.V., Andrews, D.L., Manhart, J.R., Pierce, S.K., & Rumpho, M.E. (1996). Chloroplast genes are expressed during intracellular symbiotic association of Vaucheria litorea plastids with the sea slug Elysia chlorotica. Cell Biology, 93, 12333-12338
  6. ^ a b c Rumpho ME, Worful JM, Lee J et al. (November 2008). "Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica". Proc. Natl. Acad. Sci. U.S.A. 105 (46): 17867–17871. doi:10.1073/pnas.0804968105. PMC 2584685. PMID 19004808. Retrieved 2008-11-24. 
  7. ^ Solar-Powered Slugs Are Not Solar-Powered, National Geographic
  8. ^ Green Sea Slug Is Part Animal, Part Plant, Wired
  9. ^ Wägele H, Deusch O, Händeler K, Martin R, Schmitt V, Christa G et al. (2011). "Transcriptomic evidence that longevity of acquired plastids in the photosynthetic slugs Elysia timida and Plakobranchus ocellatus does not entail lateral transfer of algal nuclear genes.". Mol Biol Evol 28 (1): 699–706. doi:10.1093/molbev/msq239. PMC 3002249. PMID 20829345. 
  10. ^ a b Bhattacharya D, Pelletreau KN, Price DC, Sarver KE, Rumpho ME (2013). "Genome analysis of Elysia chlorotica Egg DNA provides no evidence for horizontal gene transfer into the germ line of this Kleptoplastic Mollusc.". Mol Biol Evol 30 (8): 1843–52. doi:10.1093/molbev/mst084. PMC 3708498. PMID 23645554. 
  11. ^ a b de Vries J, Habicht J, Woehle C, Huang C, Christa G, Wägele H et al. (2013). "Is ftsH the key to plastid longevity in sacoglossan slugs?". Genome Biol Evol 5 (12): 2540–8. doi:10.1093/gbe/evt205. PMC 3879987. PMID 24336424. 
  12. ^ Mature Veliger (schema)
  13. ^ Video

External links[edit]