Energy density Extended Reference Table

From Wikipedia, the free encyclopedia
Jump to: navigation, search

This is extended version of energy density table from the main page Energy density

Energy Densities Table
Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency %
Arbitrary Antimatter ≈89,876,000,000 depends on density
Deuterium-tritium fusion 576,000,000
Uranium-235 used in nuclear weapons 144,000,000 1,500,000,000
Natural uranium (99.3% U-238, 0.7% U-235) in fast breeder reactor 86,000,000
Reactor-grade uranium (3.5% U-235) in light water reactor 3,456,000 30%
Pu-238 α-decay 2,200,000
Hf-178m2 isomer 1,326,000 17,649,060
Natural uranium (0.7% U235) in light water reactor 443,000 30%
Ta-180m isomer 41,340 689,964
Specific orbital energy of Low Earth orbit (approximate) 33
Beryllium + Oxygen 23.9[1]
Lithium + Fluorine 23.75[citation needed]
Hydrogen + Oxygen 13.43[citation needed]
Octaazacubane potential explosive 22.9[2]
Dinitroacetylene explosive - computed[citation needed] 9.8
Octanitrocubane explosive 8.5[3] 16.9[4]
Tetranitrotetrahedrane explosive - computed[citation needed] 8.3
Heptanitrocubane explosive - computed[citation needed] 8.2
Sodium (reacted with chlorine)[citation needed] 7.0349
Hexanitrobenzene explosive 7[5]
Tetranitrocubane explosive - computed[citation needed] 6.95
Ammonal (Al+NH4NO3 oxidizer)[citation needed] 6.9 12.7
Tetranitromethane + hydrazine bipropellant - computed[citation needed] 6.6
Nitroglycerin 6.38[6] 10.2[7]
ANFO-ANNM[citation needed] 6.26
Octogen (HMX) 5.7[6] 10.8[8]
TNT [Kinney, G.F.; K.J. Graham (1985). Explosive shocks in air. Springer-Verlag. ISBN 3-540-15147-8. ][citation needed] 4.610 6.92
Copper Thermite (Al + CuO as oxidizer)[citation needed] 4.13 20.9
Thermite (powder Al + Fe2O3 as oxidizer) 4.00 18.4
Hydrogen peroxide decomposition (as monopropellant) 2.7 3.8
battery, Lithium ion nanowire 2.54 29 95%[clarification needed][9]
battery, Lithium Thionyl Chloride (LiSOCl2)[10] 2.5
Water 220.64 bar, 373.8°C[citation needed][clarification needed] 1.968 0.708
Kinetic energy penetrator [clarification needed] 1.9 30
battery, Fluoride ion[citation needed] 1.7 2.8
battery, Hydrogen closed cycle H fuel cell[11] 1.62
Hydrazine(toxic) decomposition (as monopropellant) 1.6 1.6
Ammonium nitrate decomposition (as monopropellant) 1.4 2.5
Thermal Energy Capacity of Molten Salt 1[citation needed] 98%[12]
Molecular spring approximate[citation needed] 1
battery, Sodium Sulfur .72[13] 1.23[citation needed] 85%[14]
battery, Lithium-manganese[15][16] 0.83-1.01 1.98-2.09
battery, Lithium ion[17][18] 0.46-0.72 0.83-3.6[19] 95%[20]
battery, Lithium Sulphur[21] 1.80[22] 1.80
battery (Sodium Nickel Chloride), High Temperature 0.56
battery, Silver-oxide[15] 0.47 1.8
Flywheel 0.36-0.5[23][24]
5.56 × 45 mm NATO bullet[clarification needed] 0.4 3.2
battery, Nickel metal hydride (NiMH), low power design as used in consumer batteries[25] 0.4 1.55
battery, Zinc-manganese (alkaline), long life design[15][17] 0.4-0.59 1.15-1.43
Liquid Nitrogen 0.349
Water - Enthalpy of Fusion 0.334 0.334
battery, Zinc Bromine flow (ZnBr)[26] 0.27
battery, Nickel metal hydride (NiMH), High Power design as used in cars[27] 0.250 0.493
battery, Nickel cadmium (NiCd)[17] 0.14 1.08 80%[20]
battery, Zinc-Carbon[17] 0.13 0.331
battery, Lead acid[17] 0.14 0.36
battery, Vanadium redox 0.09[citation needed] 0.1188 7070-75%
battery, Vanadium Bromide redox 0.18 0.252 80%–90%[28]
Capacitor Ultracapacitor 0.0199[29] 0.050[citation needed]
Capacitor Supercapacitor 0.01[citation needed] 80%–98.5%[30] 39%–70%[30]
Superconducting magnetic energy storage 0 0.008[31] >95%
Capacitor 0.002[32]
Neodymium magnet 0.003[33]
Ferrite magnet 0.0003[33]
Spring power (clock spring), torsion spring 0.0003[34] 0.0006
Storage type Energy density by mass (MJ/kg) Energy density by volume (MJ/L) Peak recovery efficiency % Practical recovery efficiency %
  1. ^ "The Heat of Formation of Beryllium Oxide1 - Journal of the American Chemical Society (ACS Publications)". Pubs.acs.org. 2002-05-01. Retrieved 2010-05-07. 
  2. ^ "Besides N2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms?† - Inorganic Chemistry (ACS Publications)". Pubs.acs.org. 1996-05-28. Retrieved 2010-05-07. 
  3. ^ http://www3.interscience.wiley.com/journal/122324589/abstract
  4. ^ "Octanitrocubane - Wikipedia, the free encyclopedia". En.wikipedia.org. Retrieved 2010-05-07. 
  5. ^ http://www3.interscience.wiley.com/journal/109618256/abstract
  6. ^ a b "Chemical Explosives". Fas.org. 2008-05-30. Retrieved 2010-05-07. 
  7. ^ Česky. "Nitroglycerin - Wikipedia, the free encyclopedia". En.wikipedia.org. Retrieved 2010-05-07. 
  8. ^ Česky (2010-05-01). "HMX - Wikipedia, the free encyclopedia". En.wikipedia.org. Retrieved 2010-05-07. 
  9. ^ "Nanowire battery can hold 10 times the charge of existing lithium-ion battery". News-service.stanford.edu. 2007-12-18. Retrieved 2010-05-07. 
  10. ^ "Lithium Thionyl Chloride Batteries". Nexergy. Retrieved 2010-05-07. 
  11. ^ "The Unitized Regenerative Fuel Cell". Llnl.gov. 1994-12-01. Retrieved 2010-05-07. 
  12. ^ "Technology". SolarReserve. Retrieved 2010-05-07. 
  13. ^ "New battery could change world, one house at a time". Heraldextra.com. 2009-04-04. Retrieved 2010-05-07. 
  14. ^ "Energy Citations Database (ECD) - - Document #5960185". Osti.gov. Retrieved 2010-05-07. 
  15. ^ a b c "ProCell Lithium battery chemistry". Duracell. Retrieved 2009-04-21. 
  16. ^ "Properties of non-rechargeable lithium batteries". corrosion-doctors.org. Retrieved 2009-04-21. 
  17. ^ a b c d e "Battery energy storage in various battery types". AllAboutBatteries.com. Retrieved 2009-04-21. 
  18. ^ A typically available lithium ion cell with an Energy Density of 201 wh/kg [1]
  19. ^ "Lithium Batteries". Retrieved 2010-07-02. 
  20. ^ a b Justin Lemire-Elmore (2004-04-13). "The Energy Cost of Electric and Human-Powered Bicycles". p. 7. Retrieved 2009-02-26. "Table 3: Input and Output Energy from Batteries" 
  21. ^ "Lithium Sulfur Rechargeable Battery Data Sheet". Sion Power, Inc. 2005-09-28. 
  22. ^ Kolosnitsyn, V.S.; E.V. Karaseva (2008). "Lithium-sulfur batteries: Problems and solutions". Maik Nauka/Interperiodica/Springer. pp. 506–509. doi:10.1134/s1023193508050029. 
  23. ^ Storage Technology Report, ST6 Flywheel
  24. ^ "Next-gen Of Flywheel Energy Storage". Product Design & Development. Retrieved 2009-05-21. 
  25. ^ Advanced Materials for Next Generation NiMH Batteries, Ovonic, 2008
  26. ^ "ZBB Energy Corp". Archived from the original on 2007-10-15. "75 to 85 watt-hours per kilogram" 
  27. ^ High Energy Metal Hydride Battery
  28. ^ "Microsoft Word - V-FUEL COMPANY AND TECHNOLOGY SHEET 2008.doc" (PDF). Retrieved 2010-05-07. 
  29. ^ "Maxwell Technologies: Ultracapacitors - BCAP3000". Maxwell.com. Retrieved 2010-05-07. 
  30. ^ a b http://www2.fs.cvut.cz/web/fileadmin/documents/12241-BOZEK/publikace/2004/Sup-Cap-Energy-Storage.pdf
  31. ^ [2][dead link]
  32. ^ http://www.doc.ic.ac.uk/~mpj01/ise2grp/energystorage_report/node9.html
  33. ^ a b http://www.askmar.com/Magnets/Promising%20Magnet%20Applications.pdf
  34. ^ "Garage Door Springs". Garagedoor.org. Retrieved 2010-05-07.