Environmental threats to the Great Barrier Reef

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The Great Barrier Reef is the world's largest coral reef system,[1][2] composed of roughly 3,000 individual reefs and 900 islands that stretch for 2,600 kilometres (1,616 mi) and cover an area of approximately 344,400 km².[3][4] The reef is located in the Coral Sea, off the coast of Queensland in northeast Australia. A large part of the reef is protected by the Great Barrier Reef Marine Park.

The Great Barrier Reef's environmental pressures include lowered water quality from runoff including suspended sediment, excess nutrients, pesticides, and fluctuations in salinity. The effects of climate change, including increased temperatures, storms and coral bleaching. Cyclic outbreaks of the crown-of-thorns starfish, overfishing which disrupts food chains, and shipping routes which can result in oil spills or improper ballast discharge also cause damage to the reef.

Water quality[edit]

Storage Silos on the Gladstone waterfront - An industrial area in the water catchment area.

Water quality was first identified as a threat to the Great Barrier Reef in 1989.[5] Thirty "major rivers" and hundreds of small streams comprise the Great Barrier Reef catchment area, which covers 423,000 square kilometres (163,000 sq mi) of land.[6] Queensland has several major urban centres on the coast including Cairns, Townsville, Mackay, Rockhampton and the industrial city of Gladstone. Dredging in the Port of Gladstone is raising concern after dead and diseased fish where found in the harbour. Cairns and Townsville are the largest of the coastal cities, with populations of approximately 150,000 each.[7]

There are many major water quality variables affecting coral reef health including water temperature, salinity, nutrients, suspended sediment concentrations,[8] and pesticides.[6] The species in the Great Barrier Reef area are adapted to tolerable variations in water quality however when critical thresholds are exceeded they may be adversely impacted. River discharges are the single biggest source of nutrients,[9] providing significant pollution of the Reef during tropical flood events with over 90% of this pollution being sourced from farms.[8]

Due to the range of human uses made of the water catchment area adjacent to the Great Barrier Reef, some 700 of the 3000 reefs[10] are within a risk zone where water quality has declined owing to the naturally acidic sediment and chemical runoff from farming, and to coastal development and the loss of coastal wetlands which are a natural filter.[11] Industries in the water catchment area are cotton growing, comprising approximately 262 km²; 340 dairy farms with an average area of 2 km² each, 158 km² cattle grazing, 288 km² horticulture including banana growing, sugarcane farming, and cropping of approximately 8,000 km² wheat, 1,200 km² barley, and 6,000 to 7000 km² sorghum and maize.[12] Fertiliser use in the cotton, dairy, beef, horticulture and sugar industries is essential to ensure productivity and profitability. However, fertiliser and byproducts from sugar cane harvesting methods form a component of surface runoff into the Great Barrier Reef lagoon.[12][13] Principal agricultural activity is sugar cane farming in the wet tropics and cattle grazing in the dry tropics regions. Both are considered significant factors affecting water quality.[13] Copper, a common industrial pollutant in the waters of the Great Barrier Reef, has been shown to interfere with the development of coral polyps.[14] Flood plumes are flooding events associated with higher levels of nitrogen and phosphorus.[15] In February 2007, due to a monsoonal climate system, plumes of sediment runoff have been observed reaching to the outmost regions of the reef.[16]

Runoff is especially concerning in the region south of Cairns, as it receives over 3000 mm of rain per year and the reefs are less than 30 kilometres (19 mi) away from the coastline.[17] Farm run off is polluted as a result of overgrazing and excessive fertiliser and pesticide use. Mud pollution has increased by 800% and inorganic nitrogen pollution by 3,000% since the introduction of European farming practices on the Australian landscape. This pollution has been linked to a range of very significant risks to the reef system, including intensified outbreaks of the coral-eating Crown of Thorns Starfish which contributed to a loss of 66% of live coral cover on sampled reefs in 2000.[18]

It is thought that the mechanism behind excess nutrients affecting the reefs is due to increased light and oxygen competition from algae,[9] but unless herbivory is unusually low, this will not create a phase shift from the Great Barrier Reef being primarily made up of coral to being primarily made up of algae.[19]

It has been suggested that poor water quality due to excess nutrients encourages the spread of infectious diseases among corals.[20] In general, the Great Barrier Reef is considered to have low incidences of coral diseases.[21] Skeletal Eroding Band, a disease of bony corals caused by the protozoan Halofolliculina corallasia, affects 31 species of corals from six families on the reef.[22] The long-term monitoring program has found an increase in incidences of coral disease in the period 1999-2002, although they dispute the claim that on the Great Barrier Reef, coral diseases are caused by anthropogenic pollution.[23]

Elevated nutrient concentrations result in a range of impacts on coral communities and under extreme conditions can result in a collapse. It also affects coral by promoting phytoplankton growth which increases the number of filter feeding organisms that compete for space. Excessive inputs of sediment from land to coral can lead to reef destruction through burial, disruption of recruitment success or deleterious community shifts. Sediments affect coral by smothering them when particles settle out, reducing light availability and potentially reducing photosynthesis and growth. Coral reefs exist in seawater salinities from 25 to 42%. Salinity impacts to corals are increased by other flood-related stresses.[9]

The Australian and Queensland Governments have committed to act to protect the reef,[24] and water quality monitoring programmes are in place.[6] However, the World Wildlife Fund has criticised that progress against these commitments has been slow, saying that as many as 700 reefs are at risk from sediment runoff.[10]

Pollution from mining[edit]

A freedom of information request by the Northern Queensland Conservation Council in 2014 showed that Queensland Nickel, owned by Australian politician Clive Palmer, discharged nitrate-laden water into the Great Barrier Reef in 2009 and 2011 - on the later occasion releasing 516 tonnes (508 long tons; 569 short tons) of toxic waste water. In June 2012, Queensland Nickel stated it intended to release waste water, continuously for three months, “at least 100 times the allowed maximum level as well as heavy metals and other contaminants”. A Great Barrier Reef Marine Park Authority (GBRMPA) briefing stated the company had “threatened a compensation claim of $6.4bn should the GBRMPA intend to exert authority over the company’s operations”. In response to the publicisation of the dumping incidents, the GBRMPA stated:

We have strongly encouraged the company to investigate options that do not entail releasing the material to the environment and to develop a management plan to eliminate this potential hazard; however, GBRMPA does not have legislative control over how the Yabulu tailings dam is managed.[25]

Dumping[edit]

In December 2013, Greg Hunt, the Australian environment minister, approved a plan for dredging to create three shipping terminals as part of the construction of a coalport. According to corresponding approval documents, the process will create around 3 million cubic metres of dredged seabed that will be dumped within the Great Barrier Reef marine park area.[26]

On 31 January 2014, the GBRMPA issued a dumping permit that will allow three million cubic metres of sea bed from Abbot Point, north of Bowen, to be transported and unloaded in the waters of the Great Barrier Reef Marine Park. Potential significant harms have been identified in relation to dredge spoil and the process of churning up the sea floor in the area and exposing it to air: firstly, new research shows the finer particles of dredge spoil can cloud the water and block sunlight, thereby starving sea grass and coral up to distances of 80 km away from the point of origin due to the actions of wind and currents. Furthermore, dredge spoil can literally smother reef or sea grass to death, while storms can repeatedly resuspend these particles so that the harm caused is ongoing; secondly, disturbed sea floor can release toxic substances into the surrounding environment.[27]

The dredge spoil from the Abbot Point port project is to be dumped 24 kilometres (15 mi) away, near Bowen in north Queensland, and the approval from the Authority will result in the production of an extra 70 million tonnes of coal annually, worth between A$1.4 billion and $2.8 billion.[27] Authority chairman, Dr Russell Reichelt, stated after the confirmation of the approval:

This approval is in line with the agency’s view that port development along the Great Barrier Reef coastline should be limited to existing ports. As a deepwater port that has been in operation for nearly 30 years, Abbot Point is better placed than other ports along the Great Barrier Reef coastline to undertake expansion as the capital and maintenance dredging required will be significantly less than what would be required in other areas. It’s important to note the seafloor of the approved disposal area consists of sand, silt and clay and does not contain coral reefs or seagrass beds.[27]

The approval was provided with a corresponding set of 47 new environmental conditions that include the following:

  • A long-term water quality monitoring plan extending five years after the disposal activity is completed.
  • A heritage management plan to protect the Catalina second world war aircraft wreck in Abbot Bay.
  • The establishment of an independent dredging and disposal technical advice panel and a management response group, to include community representatives.[27]

Numerous responses, including online petitions, were published in opposition to the proposal: Greenpeace launched the "Save the Reef" campaign in opposition to the dumping, which remained active with over 170,000 signatures on 3 March 2014;[28] in addition to an online petition that registered more than 250,000 signatures on 3 March 2014, political activist group GetUp! are also funding a legal case in conjunction with non-profit Environmental Defenders Office of Queensland (EDO), which represents the North Queensland Conservation Council;[29][30] and "Fight for the Reef", a partnership between World Wide Fund for Nature (WWF)-Australia and the Australian Marine Conservation Society (AMCS), maintains a campaign that collects online donations to fund a "legal fighting team", and displayed nearly 60,000 supporters on its website on 11 May 2014.[31]

The legal fighting team of the WWF-Australia and the AMCS received further support in April 2014 following the release of the "Sounds For The Reef" musical fundraising project. Produced by Straightup, the digital album features artists such as John Butler, The Herd, Sietta, Missy Higgins, The Cat Empire, Fat Freddys Drop, The Bamboos (featuring Kylie Auldist) and Resin Dogs. Released on 7 April, the album's 21 songs were sold on the Bandcamp website.[32][33]

Further support for the WWF-Australia and AMCS partnership occurred in late April 2014, when the Ben & Jerry's ice cream company signed onto the "Fight for the Reef" campaign. In early April 2014, the company withdrew the popular "Phish Food" flavour in Australia due to the aquatic association and the potential for awareness-raising. The product withdrawal decision followed tours around select parts of the nation that involved Ben & Jerry's representatives distributing free ice cream to highlight the reef damage issue.[34]

In response, Environment Minister Andrew Powell said that he would be contacting parent corporation Unilever, explaining, "The only people taking a scoop out of the reef is Ben and Jerry’s and Unilever. If you understand the facts, you’d want to be boycotting Ben and Jerry’s". The Australian public was also informed by Australian Ben & Jerry's brand manager Kalli Swaik, who stated to the Brisbane Times newspaper: "Ben & Jerry’s believes that dredging and dumping in world heritage waters surrounding the marine park area will be detrimental to the reef ecology. It threatens the health of one of Australia’s most iconic treasures."[34]

A Queensland state senator, Matthew Canavan, confirmed that he raised the issue in writing with the Australian Competition and Consumer Commission (ACCC) and said to the Courier Mail newspaper:

Ben & Jerry’s can campaign on whatever issue they like but as a company they have an obligation to tell Australians the whole truth and nothing but the truth. Australia has strict laws to protect consumers against misleading and deceptive behaviour. These mistruths could cost jobs and development in regional Queensland. It’s irresponsible behaviour from a company that should know better.[35]

Climate change[edit]

Sea temperature and bleaching of the Great Barrier Reef

Most people believe that the most significant threat to the status of the Great Barrier Reef and of the planet's other tropical reef ecosystems is climate change, consisting chiefly of global warming and the El Niño effect.[36][37] and turn colourless, revealing their white calcium carbonate skeletons, under the stress of waters that remain too warm for too long. At this stage the coral is still alive, and if the water cools, the coral can regain its zooxanthellae.[38] If the water does not cool within about a month, the coral will die of starvation. Australia experienced its warmest year on record in 2005. Abnormally high sea temperatures during the summer of 2005-2006 have caused massive coral bleaching in the Keppel Island group.

Most scientists studying the issue believe that climate change poses a massive threat to the future of the Great Barrier Reef. A draft report by the UN Intergovernmental Panel on Climate Change, the world's preeminent gathering of climate scientists, states that the Great Barrier Reef is at grave risk and will be "functionally extinct" by 2030, warning that coral bleaching will likely become an annual occurrence.[39]

However, a few scientists hold that coral bleaching may in some cases be less of a problem than the mainstream believes. Professor Ridd, from James Cook University in Townsville was quoted in The Australian (a conservative newspaper) as saying; "They are saying bleaching is the end of the world, but when you look into it, that is a highly dubious proposition". Research by scientist Ray Berkelmans "... has documented astonishing levels of recovery on the Keppel outcrops devastated by bleaching in 2006." [40] A related article in The Australian newspaper goes on to explain that; "Those that expel their zooxanthellae have a narrow opening to recolonise with new, temperature-resistant algae before succumbing. In the Keppels in 2006, Berkelmans and his team noticed that the dominant strain of zooxanthellae changed from light and heat-sensitive type C2, to more robust types D and C1." [41]

Nevertheless, most coral reef researchers anticipate severely negative effects from climate change already occurring, and potentially disastrous effects as climate change worsens. The future of the Reef may well depend on how much the planet's climate changes, and thus, on how high atmospheric greenhouse gas concentration levels are allowed to rise. On 2 September 2009, a report by the Australian Great Barrier Reef Marine Park Authority revealed that if carbon dioxide levels reached 450 parts per million corals and reef habitats will be highly vulnerable. If carbon dioxide levels are managed at or below 380 parts per million they will be only moderately vulnerable and the reefs will remain coral-dominated.[42]

Global warming may have triggered the collapse of reef ecosystems throughout the tropics. Increased global temperatures are thought by some to bring more violent tropical storms, but reef systems are naturally resilient and recover from storm battering. Most people agree that an upward trend in temperature will cause much more coral bleaching;[36][43] others suggest that while reefs may die in certain areas, other areas will become habitable for corals, and new reefs will form.[44] However, the rate at which the mass bleaching events occur is estimated to be much faster than reefs can recover from, or adjust to.[38]

However, Kleypas et al. in their 2006 report suggest that the trend towards ocean acidification indicates that as the sea's pH decreases, corals will become less able to secrete calcium carbonate.[45] In 2009, a study showed that Porites corals, the most robust on the Great Barrier Reef, have slowed down their growth by 14.2% since 1990. It suggested that the cause was heat stress and a lower availability of dissolved calcium to the corals.[46]

Climate change and global warming are one of the greatest threats to the reef.[36] A temperature rise of between two and three degrees Celsius would result in 97% of the Great Barrier Reef being bleached every year.[47] Reef scientist Terry Done has predicted that a one-degree rise in global temperature would result in 82% of the reef bleached, two degrees resulting in 97% and three degrees resulting in "total devastation".[48] A predictive model based on the 1998 and 2002 bleaching events has concurred that a temperature rise of three degrees would result in total coral mortality.[49]

Climate change has implications for other forms of life on the Great Barrier Reef as well - some fish's preferred temperature range lead them to seek new areas to live, thus causing chick mortality in seabirds that prey on the fish. Also, in sea turtles, higher temperatures mean that the sex ratio of their populations will change, as the sex of sea turtles is determined by temperature. The habitat of sea turtles will also shrink.[36]

Crown-of-thorns starfish[edit]

Crown-of-thorns starfish in Fiji.

The Crown-of-Thorns Starfish is a coral reef predator which preys on coral polyps by climbing onto them, extruding its stomach over them, and releasing digestive enzymes to absorb the liquified tissue. An individual adult of this species can eat up to six square metres of living reef in a single year.[50] Geological evidence suggests that the Crown-of-Thorns Starfish has been part of the Great Barrier Reef's ecology for "at least several thousand years", but there is no geological evidence for Crown-of-Thorns outbreaks.[51] Large outbreaks of these starfish can devastate reefs. In 2000, an outbreak contributed to a loss of 66% of live coral cover on sampled reefs in a study by the CRC Reefs Research Centre.[18] Although large outbreaks of these starfish are believed to occur in natural cycles, human activity in and around the Great Barrier Reef can worsen the effects. Reduction of water quality associated with agriculture can cause the crown-of-thorns starfish larvae to thrive. Fertiliser run off from farming increase the amount of phytoplankton available for the crown-of-thorns starfish larvae to consume. A study by the Australian Institute of Marine Science showed that a doubling of the chlorophyll in the water leads to a tenfold increase in the crown-of-thorns starfish larvae’s survival rate.[52] Overfishing of its natural predators, such as the Giant Triton, is also considered to contribute to an increase in the number of crown-of-thorns starfish.[53] The CRC Reef Research Centre defines an outbreak as when there are more than 30 adult starfish in an area of one hectare.[54]

Overfishing[edit]

The unsustainable overfishing of keystone species, such as the Giant Triton and sharks, can cause disruption to food chains vital to life on the reef. Fishing also impacts the reef through increased pollution from boats, by-catch of unwanted species (such as dolphins and turtles) and reef habitat destruction from trawling, anchors and nets.[55] Overfishing of herbivore populations can cause algal growths on reefs. The Batfish Platax pinnatus has been observed to significantly reduce algal growths in studies simulating overfishing.[56] Sharks are fished for their meat, and when they are part of bycatch, it is common to kill the shark and throw it overboard, as there is a belief that they interfere with fishing.[57] As of 1 July 2004, approximately one-third of the Great Barrier Reef Marine Park is protected from species removal of any kind, including fishing, without written permission.[58] However, illegal poaching is not unknown in these no-take zones.[57]

Shipping[edit]

The Shen Neng 1 aground on the Great Barrier Reef, 5 April 2010.

Shipping accidents continue to be perceived as a threat, as several commercial shipping routes pass through the Great Barrier Reef. The GBRMPA estimates that about 6000 vessels greater than 50 metres (164 ft) in length use the Great Barrier Reef as a route.[59] From 1985 to 2001, 11 collisions and 20 groundings occurred along the Great Barrier Reef shipping route, with human error identified as the leading cause of shipping accidents.[60]

Reef pilots have stated that they consider the reef route safer than outside the reef in the event of mechanical failure, since a ship can sit safely while being repaired.[61] The inner route is used by 75% of all ships that travel over the Great Barrier Reef.[59] As of 2007, over 1,600 known shipwrecks have occurred in the Great Barrier Reef region.[62]

Waste and foreign species discharged from ships in ballast water (when purging procedures are not followed) are a biological hazard to the Great Barrier Reef.[63] Tributyltin (TBT) compounds found in some antifouling paint on ship hulls leaches into seawater and is toxic to marine organisms and humans; as of 2002, efforts are underway to restrict its use.[64]

In April 2010, the bulk coal carrier Shen Neng 1 ran aground on the Great Barrier Reef, causing the largest grounding scar to date. The spill caused damage to a 400,000sqm section of the Great Barrier Reef and the use of oil dispersant resulted in oil spreading to reef islands 25 km away.[65]

Oil[edit]

It was suspected that the Great Barrier Reef is the cap to an oil trap, after a 1923 paper suggested that it had the right rock formation to support "oilfields of great magnitude". After the Commonwealth Petroleum Search Subsidies Act of 1957, exploration activities increased in Queensland, including a well drilled at Wreck Island in the southern Great Barrier Reef in 1959.[66] In the 1960s, drilling for oil and gas was investigated throughout the Great Barrier Reef,[67][68] by seismic and magnetic methods in the Torres Strait, along "the eastern seaboard of Cape York to Princess Charlotte Bay" and along the coast from Cooktown to Fraser Island. In the late 1960s, more exploratory wells were drilled near Wreck Island in the Capricorn Channel, and near Darnley Island in the Torres Strait, but "all results were dry".[66]

In 1970, responding to concern about oil spills such as the Torrey Canyon, two Royal Commissions were ordered "into exploratory and production drilling for petroleum in the area of the Great Barrier Reef". After the Royal Commissions, the federal and state governments ceased allowing petroleum drilling on the Great Barrier Reef.[4][69] A study in 1990 concluded that the reef is too young to contain oil reserves.[70] Oil drilling remains prohibited on the Great Barrier Reef, yet oil spills due to shipping routes are still a threat to the reef system, with a total of 282 oil spills between 1987-2002.[9]

Tropical cyclones[edit]

Tropical Cyclone Larry over the Great Barrier Reef, 19 March 2006

Tropical cyclones are a cause of ecological disturbance to the Great Barrier Reef. The types of damage caused by tropical cyclones to the Great Barrier Reef is varied, including fragmentation, sediment plumes, and decreasing salinity following heavy rains (Tropical Cyclone Joy). The patterns of reef damage are similarly 'patchy'. From 1910–1999, 170 cyclones' paths came near or through the Great Barrier Reef. Most cyclones pass through the Great Barrier Reef within a day.[71] In general, compact corals such as Porites fare better than branching corals under cyclone conditions. The major damage caused by Tropical Cyclone Larry was to underlying reef structures, and breakage and displacement of corals, which is overall consistent with previous tropical cyclone events.[72] Severe tropical cyclones hit the Queensland coast every 200 to 300 years;[21] however, during the period 1969–1999 most cyclones in the region were very weak – category one or two on the Australian Bureau of Meteorology scale.[71]

On 2 February 2011, Severe Tropical Cyclone Yasi struck northern Queensland and caused severe damage to a stretch of hundreds of kilometres within the Great Barrier Reef. The corals could take a decade to recover fully. Cyclone Yasi had wind speeds of 290 kilometers per hour.[73][74][75]

Other threats[edit]

On the second day of the 2013 round of the biennial training exercise 'Talisman Saber', in which 28,000 US and Australian military personnel conduct joint activities over a three-week period,four unarmed bombs were dropped into the Great Barrier Reef by two US AV-8B Harrier jets that were unable to land with the weight of the weapons. To minimize potential harm to the reef, the four bombs, weighing a total 1.8 metric tons (4,000 pounds), were dropped into more than 50 meters (164 ft) of water away from the reef's coral structures. The bomb drop was originally planned to occur at the Townshend Island bombing range, but after controllers reported that the area was not clear of hazards, the emergency jettison occurred. Australian senator Larissa Waters responded to the news by asking, "Have we gone completely mad? Is this how we look after our World Heritage area now? Letting a foreign power drop bombs on it?"[76]

See also[edit]

References[edit]

  1. ^ UNEP World Conservation Monitoring Centre (1980). "Protected Areas and World Heritage - Great Barrier Reef World Heritage Area". Department of the Environment and Heritage. Archived from the original on 31 August 2006. Retrieved 10 June 2006. 
  2. ^ "Great Barrier Reef World Heritage Values". Archived from the original on 6 October 2006. Retrieved 10 November 2006. 
  3. ^ Fodor's. "Great Barrier Reef Travel Guide". Retrieved 8 August 2006. 
  4. ^ a b Department of the Environment and Heritage. "Review of the Great Barrier Reef Marine Park Act 1975". Archived from the original on 18 October 2006. Retrieved 2 November 2006. 
  5. ^ "Pressures on the Marine Park". Review of the Great Barrier Reef Marine Park Act 1975. Commonwealth of Australia. 2006. Archived from the original on 30 July 2008. Retrieved 15 March 2009. 
  6. ^ a b c Henderson, Fiona; Kroon, Frederike (2009). Overview of CSIRO Water Quality Research in the Great Barrier Reef, 2003 - 2008. CSIRO. 
  7. ^ "Office of Economic and Statistical Research". Office of Economic and Statistical Research. Retrieved 28 May 2006. 
  8. ^ a b "Coastal water quality" (PDF). The State of the Environment Report Queensland 2003. Environment Protection Agency Queensland. 2003. Retrieved 7 June 2007. [dead link]
  9. ^ a b c d Great Barrier Reef Marine Park Authority (2006). "Principal water quality influences on Great Barrier Reef ecosystems". Archived from the original on 16 October 2006. Retrieved 22 October 2006. 
  10. ^ a b "Governments sit on hands while pollution damages Reef: WWF". Retrieved 7 June 2007. [dead link]
  11. ^ Great Barrier Reef Marine Park Authority. "Wetlands". Retrieved 13 March 2007. 
  12. ^ a b Brodie, J. (2007). "Nutrient management zones in the Great Barrier Reef Catchment: A decision system for zone selection" (PDF). Australian Centre for Tropical Freshwater Research. Retrieved 7 June 2007. 
  13. ^ a b Australian Government Productivity Commission (2003). "Industries, Land Use and Water Quality in the Great Barrier Reef Catchment - Key Points". Archived from the original on 6 September 2006. Retrieved 29 May 2006. 
  14. ^ Emma Young (18 November 2003). "Copper decimates coral reef spawning". New Scientist. Retrieved 26 August 2006. 
  15. ^ "Research Publication No. 68 - Flood Plumes in the Great Barrier Reef: Spatial and Temporal Patterns in Composition and Distribution". [dead link]
  16. ^ CSIRO (2007). "CSIRO imagery shows outer Great Barrier Reef at risk from river plumes". Retrieved 13 March 2007. 
  17. ^ Hopley, David; Smithers, Scott G.; Parnell, Kevin E. (2007). The geomorphology of the Great Barrier Reef : development, diversity, and change. Cambridge : Cambridge University Press. p. 3. ISBN 0-521-85302-8. 
  18. ^ a b "CRC REEF RESEARCH CENTRE TECHNICAL REPORT No. 32 — Crown-of-thorns starfish(Acanthaster planci) in the central Great Barrier Reef region. Results of fine-scale surveys conducted in 1999-2000.". Retrieved 7 June 2007. 
  19. ^ McCook, L.J. (December 1999). "Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef". Coral Reefs 18 (4): 357–367. doi:10.1007/s003380050213. 
  20. ^ Rachel Nowak (11 January 2004). "Sewage nutrients fuel coral disease". New Scientist. Retrieved 10 August 2006. 
  21. ^ a b Great Barrier Reef Marine Park Authority (2004). "Pressure". Retrieved 23 March 2007. [dead link]
  22. ^ "AIMS Longterm Monitoring - Coral Diseases on the Great Barrier Reef - Skeletal Eroding Band". www.aims.gov.au. Archived from the original on 13 July 2009. Retrieved 22 August 2009. 
  23. ^ Page, Cathie (2002). "Coral diseases on the Great Barrier Reef". Australian Institute of Marine Science Research. Archived from the original on 8 September 2006. Retrieved 29 October 2006. 
  24. ^ "Department of the Premier and Cabinet - ReefPlan". Archived from the original on 12 May 2007. Retrieved 7 June 2007. 
  25. ^ Milman, Oliver (12 February 2014). "Clive Palmer's nickel refinery pumped toxic waste into Great Barrier Reef park". The Guardian. Retrieved 12 February 2014. 
  26. ^ Oliver Milman (10 December 2013). "Greg Hunt approves dredging off Queensland to create huge coalport". The Guardian. Retrieved 18 December 2013. 
  27. ^ a b c d Dermot O'Gorman (31 January 2014). "Dredge dumping: just because you can doesn't mean you should". ABC News. Retrieved 1 February 2014. 
  28. ^ "Home". Save the Reef. Greenpeace. 3 March 2014. Retrieved 3 March 2014. 
  29. ^ Stephen Johnson (14 February 2014). "Battle brewing over Great Barrier Reef". stuff.co.nz. Fairfax New Zealand Limite. Retrieved 3 March 2014. 
  30. ^ "Sign the petition!". GetUp!. GetUp!. 3 March 2014. Retrieved 3 March 2014. 
  31. ^ "Home". Fight for the Reef. Australian Marine Conservation Society. 11 May 2014. Retrieved 11 May 2014. 
  32. ^ "Artists United for the Great Barrier Reef". PBS. Progressive Broadcasting Service Cooperative Ltd. 7 April 2014. Retrieved 15 April 2014. 
  33. ^ "Sounds for the Reef". Sounds for the Reef on Bandcamp. Bandcamp. 7 April 2014. Retrieved 15 April 2014. 
  34. ^ a b AAP (29 April 2014). "Ben and Jerry's ice cream hurting reef: Qld govt". The Brisbane Times. Retrieved 11 May 2014. 
  35. ^ Sarah Vogler (1 May 2014). "LNP refers ice cream company Ben and Jerry’s to ACCC over Barrier Reef campaign". The Courier Mail. Retrieved 11 May 2014. 
  36. ^ a b c d Great Barrier Reef Marine Park Authority gov.au/corp_site/info_services/science/climate_change/current_condition_reports/2007_02_14.  Missing or empty |title= (help)[dead link]
  37. ^ Marshall, Paul; Schuttenberg[dead link], Heidi. Townsville, Australia. ISBN 1-876945-40-0 http://www.gbrmpa.gov.au/corp_site/info_services/publications/misc_pub/a_reef_managers_guide_to_coral_bleaching.  Missing or empty |title= (help)
  38. ^ a b Marshall, Paul; Schuttenberg., Heidi; Marshall, Paul; Schuttenberg, Heidi. (2006). A Reef Manager’s Guide to Coral Bleaching. Townsville, Australia: Great Barrier Reef Marine Park Authority,. ISBN 1-876945-40-0.  [dead link]
  39. ^ The Daily Telegraph - 30 January 2007 - Online version[dead link]
  40. ^ Jamie Walker (19 December 2009). "Scientists 'crying wolf' over coral". The Australian. Retrieved 19 December 2009. 
  41. ^ Jamie Walker (19 December 2009). "How the reef became blue again". The Australian. Retrieved 19 December 2009. 
  42. ^ [1][dead link]
  43. ^ Greg Roberts (19 January 2003). "Great barrier grief as warm-water bleaching lingers". Sydney Morning Herald. Retrieved 30 May 2006. 
  44. ^ Kate Ravilious (13 December 2004). "Coral reefs may grow with global warming". New Scientist. Retrieved 10 August 2006. 
  45. ^ Kleypas, J.A., R.A. Feely, V.J. Fabry, C. Langdon, C.L. Sabine, and L.L. Robbins. "Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Further Research". Retrieved 18 October 2006. 
  46. ^ De'Ath, G.; Lough, J. M.; Fabricius, K. E. (2 January 2009). "Declining Coral Calcification on the Great Barrier Reef". Science 323 (5910): 116–119. doi:10.1126/science.1165283. PMID 19119230. 
  47. ^ Jones, R.N. (2004) Managing Climate Change Risks, in Agrawala, S. and Corfee-Morlot, J. (eds.), The Benefits of Climate Change Policies: Analytical and Framework Issues, OECD, Paris, 249–298, cited in the CSIRO's "Climate Change Impacts on Australia and the Benefits of Early Action to Reduce Global Greenhouse Gas Emissions" [2]
  48. ^ Woodford, J. (2004). "Great? Barrier Reef". Australian Geographic 76: 37–55. 
  49. ^ Berkelmans, Ray; De'ath, Glenn, Kininmonth, Stuart, Skirving, William J. (2004). "A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: spatial correlation, patterns, and predictions". Coral Reefs 23 (1): 74–83. doi:10.1007/s00338-003-0353-y. 
  50. ^ Pierre Madl. "Marine Biology I - Acanthaster planci". Retrieved 28 August 2006. 
  51. ^ Moran, P.J.; Reichelt, R.E.; Bradbury, R.H. (1986). "An assessment of the geological evidence for previous Acanthaster outbreaks". Coral Reefs 4 (4): 235–238. doi:10.1007/BF00298082. 
  52. ^ "Human Impact on the Great Barrier Reef". University of Michigan. Retrieved 12 February 2014. 
  53. ^ CRC Reef Research Centre. "Crown-of-thorns starfish on the Great Barrier Reef". Retrieved 28 August 2006.  (PDF)
  54. ^ CRC Reef Research Centre. "Managing crown-of-thorns starfish outbreaks". Retrieved 18 October 2006.  (PDF)
  55. ^ CSIRO Marine Research (1998). "Environmental Effects of Prawn Trawling". Archived from the original on 18 February 2006. Retrieved 28 May 2006. 
  56. ^ Brahic, Catherine (18 December 2006). "Batfish may come to Great Barrier Reef's rescue". New Scientist (Reed Business Information Ltd.). Retrieved 6 April 2007. 
  57. ^ a b Nowak, Rachel (5 December 2006). "Great Barrier Reef sharks on the edge". New Scientist (Reed Business Information Ltd.). Retrieved 6 April 2007. 
  58. ^ Great Barrier Reef Marine Park Authority. "Marine Park Zoning". Archived from the original on 19 July 2006. Retrieved 8 August 2006. 
  59. ^ a b Great Barrier Reef Marine Park Authority. "Great Barrier Reef Marine Park Authority :: Shipping". Archived from the original on 31 August 2007. Retrieved 13 March 2007. 
  60. ^ Australian Maritime Safety Authority (2002). "Great Barrier Reef Review Report - Review of ship safety and pollution prevention measures in the Great Barrier Reef". Archived from the original on 27 September 2006. Retrieved 19 October 2006. 
  61. ^ Reef Dreams: Working The Reef TV documentary, Australian Broadcasting Commission, broadcast 6 July 2006 [3]
  62. ^ Environmental Protection Agency/Queensland Parks and Wildlife Services. "About the Reef". Archived from the original on 15 August 2007. Retrieved 23 March 2007. 
  63. ^ International Maritime Organization (1997). "The IMO Guidelines Resolution A.868(20) GUIDELINES FOR THE CONTROL AND MANAGEMENT OF SHIPS' BALLAST WATER TO MINIMIZE THE TRANSFER OF HARMFUL AQUATIC ORGANISMS AND PATHOGENS". Retrieved 22 October 2006. 
  64. ^ International Maritime Organization (2002). "IMO - towards sustainable development". Archived from the original on 5 May 2006. Retrieved 22 October 2006. 
  65. ^ Rae Wilson. "Shen Neng 1 seaman to serve three months in jail". The Morning Bulletin. Capricornia Newspapers Pty Ltd. Retrieved 24 September 2013. 
  66. ^ a b Bowen, James; Bowen, Margarita (2002). The Great Barrier Reef : history, science, heritage. Cambridge : Cambridge University Press. p. 319. ISBN 0-521-82430-3. 
  67. ^ "Great Barrier Reef Marine Park Authority - Annual Report 1976-77" (PDF). [dead link]
  68. ^ Australian Institute of Marine Science (1996). "AIMS Science for Management of the Great Barrier Reef - The Great Barrier Reef at a Glance". Archived from the original on 25 August 2006. Retrieved 10 November 2006. 
  69. ^ Parliament of Australia (2006). "List of Royal Commissions, 1902-". Retrieved 22 October 2006. [dead link]
  70. ^ Anderson, Ian (20 October 1990). "Darwin may founder on the Great Barrier Reef". New Scientist. Retrieved 31 October 2008. 
  71. ^ a b Puotinen, M. L. (2004). "Tropical Cyclones in the Great Barrier Reef, Australia, 1910–1999: a First Step Towards Characterizing the Disturbance Regime". Australian Geographical Studies (Australian Geographical Studies) 42 (3): 378. doi:10.1111/j.1467-8470.2004.00288.x. 
  72. ^ Great Barrier Reef Marine Park Authority. "Environmental effects of Tropical Cyclone Larry - Précis". Retrieved 23 March 2007. [dead link]
  73. ^ News, ABC (5 February 2011). "Yasi does 10yrs damage to Barrier Reef". ABC News (Australia). Retrieved 5 February 2011. 
  74. ^ Bentley, Amelia (5 February 2011). "Good and bad news for reef in Yasi's wake". Brisbane Times. Retrieved 5 February 2011. 
  75. ^ Colton, Jill (5 February 2011). "Cyclone Yasi severely damages reef". The Weather Network News. Retrieved 5 February 2011. 
  76. ^ AP (21 July 2013). "Bombs dropped on Great Barrier Reef marine park". The Guardian. Retrieved 21 July 2013.