Epitranscriptomics

From Wikipedia, the free encyclopedia
Jump to: navigation, search


This recently coined term describes a type of gene expression regulation, or a study thereof, that depends on biochemical modifications of mRNA.[1] By analogy to the term epigenetics, described as "functionally relevant changes to the genome that do not involve a change in the nucleotide sequence", epitranscriptomics can be defined as a functionally relevant changes to the transcriptome that do not involve a change in the ribonucleotide sequence. The epitranscriptome, therefore, is defined as the ensemble of such functionally relevant changes. There are several types of RNA modification that impact on gene expression.

N6-Methyladenosine (m6A )[edit]

m6A describes the methylation of the nitrogen at position 6 of the adenosine base within mRNA. Discovered in 1974,[2] m6A is the most abundant eukaryotic mRNA modification.[3] The term "epitranscriptome" was coined following transcriptome-wide mappings of m6A sites,[4][5] but does not necessarily exclude other post-transcriptional mRNA modifications.
m6A methylation regulates nuclear export of mature mRNA and mRNA stability.[6][7] How, and in response to what stimulus, the cell endogeneously regulates the level of m6A methylation remains unclear at present.

References[edit]

  1. ^ Saletore, Yogesh; Meyer K; Korlach J; Vilfan ID; Jaffrey S; Mason CE. (31 Oct 2012). "The birth of the Epitranscriptome: deciphering the function of RNA modifications.". Genome Biol 13 (10): 175. doi:10.1186/gb-2012-13-10-175. 
  2. ^ Desrosiers, Ronald; Friderici K.; Rottman F. (Oct 1974). "Identification of Methylated Nucleosides in Messenger RNA from Novikoff Hepatoma Cells". Proc Natl Acad Sci U S A. 71 (10): 3971–5. doi:10.1073/pnas.71.10.3971. PMC 434308. PMID 4372599. 
  3. ^ Bokar, Joseph A. (January 2005). "The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA". In H. Grosjean. Topics in Current Genetics, Vol. 12, Fine-Tuning of RNA functions by Modification and Editing. Springer-Verlag Berlin Heidelberg. pp. 141–177. 
  4. ^ Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (May 2012). "Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3' UTRs and near Stop Codons". Cell 149 (7): 1635–46. doi:10.1016/j.cell.2012.05.003. PMC 3383396. PMID 22608085. 
  5. ^ Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G (May 2012). "Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq". Nature 485 (7397): 201–6. doi:10.1038/nature11112. PMID 22575960. 
  6. ^ Wang, X.; Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C. (2 Jan 2014). "N6-methyladenosine-dependent regulation of messenger RNA stability.". Nature 505 (7481): 117–20. doi:10.1038/nature12730. PMC 3877715. PMID 24284625. 
  7. ^ Fustin JM, Doi M, Yamaguchi Y, Hayashi H, Nishimura S, Yoshida M, Isagawa T, Morioka MS, Kakeya H, Manabe I, Okamura H (November 2013). "RNA-Methylation-Dependent RNA Processing Controls the Speed of the Circadian Clock". Cell 155 (4): 793–806. doi:10.1016/j.cell.2013.10.026. PMID 24209618.