Erdelyi–Kober operator

From Wikipedia, the free encyclopedia
  (Redirected from Erdélyi–Kober operator)
Jump to: navigation, search

In mathematics, an Erdélyi–Kober operator is a fractional integration operation introduced by Arthur Erdélyi (1940) and Hermann Kober (1940).

The Erdélyi–Kober fractional integral is given by

\frac{x^{-\nu-\alpha+1}}{\Gamma(\alpha)}\int_0^x (t-x)^{\alpha-1}t^{-\alpha-\nu}f(t) dt

which generalizes the Riemann fractional integral and the Weyl integral.

References[edit]

  • Erdélyi, A. (1940), "On fractional integration and its application to the theory of Hankel transforms", The Quarterly Journal of Mathematics. Oxford. Second Series 11: 293–303, doi:10.1093/qmath/os-11.1.293, ISSN 0033-5606, MR 0003271 
  • Erdélyi, Arthur (1950–51), "On some functional transformations", Rendiconti del Seminario Matematico dell'Università e del Politecnico di Torino 10: 217–234, MR 0047818 
  • Erdélyi, A.; Kober, H. (1940), "Some remarks on Hankel transforms", The Quarterly Journal of Mathematics. Oxford. Second Series 11: 212–221, doi:10.1093/qmath/os-11.1.212, ISSN 0033-5606, MR 0003270 
  • Kober, Hermann (1940), "On fractional integrals and derivatives", The Quarterly Journal of Mathematics (Oxford Series) 11 (1): 193–211, doi:10.1093/qmath/os-11.1.193 
  • Sneddon, Ian Naismith (1975), "The use in mathematical physics of Erdélyi-Kober operators and of some of their generalizations", in Ross, Bertram, Fractional calculus and its applications (Proc. Internat. Conf., Univ. New Haven, West Haven, Conn., 1974), Lecture Notes in Math. 457, Berlin, New York: Springer-Verlag, pp. 37–79, doi:10.1007/BFb0067097, ISBN 978-3-540-07161-7, MR 0487301