Falcon 9 v1.0

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Falcon 9
SpX CRS-2 launch - further - cropped.jpg
A Falcon 9 v1.0 launches with an uncrewed Dragon spacecraft on a cargo resupply mission to the International Space Station in March 2013, the fifth and final flight of a version 1.0 Falcon 9.
Function Orbital launch vehicle
Manufacturer SpaceX
Country of origin United States
Cost per launch (2012) $54–59.5 million[1]
Size
Height 54.9 m (180 ft)[1]
Diameter 3.66 m (12.0 ft)
Mass 333,400 kg (735,000 lb)[1]
Stages 2
Capacity
Payload to LEO 10,450 kg (23,040 lb)[1]
Payload to
GTO
4,540 kg (10,010 lb)[1]
Launch history
Status Retired
Launch sites Cape Canaveral SLC-40
Total launches 5
Successes 4
Partial failures 1 (secondary payload only)
First flight June 4, 2010[2]
First stage
Engines 9 Merlin 1C[1]
Thrust 4,940 kN (1,110,000 lbf)
Specific impulse Sea level: 275 s
Vacuum: 304 s
Burn time 170 seconds
Fuel LOX/RP-1
Second stage
Engines 1 Merlin 1C vacuum
Thrust 445 kN (100,000 lbf)
Specific impulse Vacuum: 342 s [3]
Burn time 345 seconds
Fuel LOX/RP-1

Falcon 9 v1.0 was the first version of SpaceX's medium-lift rocket-powered spaceflight launch system, the Falcon 9 launch vehicle. Falcon 9 v1.0 made a total of five flights—all successful—in 2010–2013.

It was developed in 2005–2010, and made its maiden launch in June 2010. It was both designed and manufactured by SpaceX, headquartered in Hawthorne, California.

Both stages of the two-stage-to-orbit vehicle used liquid oxygen (LOX) and rocket-grade kerosene (RP-1) propellants. The Falcon 9 v1.0 did lift payloads of 10,450 kilograms (23,040 lb) to low Earth orbit, or could have lifted 4,540 kilograms (10,010 lb) to geostationary transfer orbit, which places the Falcon 9 design in the medium-lift range of launch systems. In its lifetime, the Falcon 9 v1.0 only launched missions to low Earth orbit.

The Falcon 9 v1.0 and Dragon capsule combination was used, beginning in 2012, to resupply the International Space Station (ISS) under a contract with NASA. It also made two demonstration flights under contract to NASA. It flew a total of three missions to the ISS.

Falcon 9 v1.0 was retired in 2013 and has been replaced by a new version of the Falcon 9, Falcon 9 v1.1, which took its maiden flight in September 2013.

Design[edit]

First stage[edit]

Falcon 9 v1.0 (left) and v1.1 (right) engine configurations
Falcon 9 booster tank at the SpaceX factory, 2008

The Falcon 9 v1.0 first stage was used on the first five Falcon 9 launches, and powered by nine SpaceX Merlin 1C rocket engines arranged in a 3x3 pattern. Each of these engines had a sea-level thrust of 556 kilonewtons (125,000 lbf) for a total thrust on liftoff of about 5,000 kilonewtons (1,100,000 lbf).[4]

The Falcon 9 tank walls and domes were made from aluminum lithium alloy. SpaceX uses an all-friction stir welded tank, the highest strength and most reliable welding technique available.[4]

The Falcon 9 v1.0 first stage used a pyrophoric mixture of triethylaluminum-triethylborane (TEA-TEB) as a first-stage ignitor.[5]

Second stage[edit]

The upper stage was powered by a single Merlin 1C engine modified for vacuum operation, with an expansion ratio of 117:1 and a nominal burn time of 345 seconds. For added reliability of restart, the engine has dual redundant pyrophoric igniters (TEA-TEB).[4]

The Falcon 9 v1.1 interstage, which connects the upper and lower stage for Falcon 9, is a carbon fiber aluminum core composite structure. Reusable separation collets and a pneumatic pusher system separate the stages. The stage separation system had twelve attachment points (later reduced to just three in the v1.1 launcher).[6]

The second stage tank of Falcon 9 is simply a shorter version of the first stage tank and uses most of the same tooling, material and manufacturing techniques. This saves money during vehicle production.[4]

Four Draco thrusters were used on the Falcon 9 v1.0 second-stage as a reaction control system.[7] The thrusters were used to hold a stable attitude for payload separation or, as a non-standard service, were also designed to be used to spin up the stage and payload to a maximum of 5 rotations per minute (RPM),[7][dated info] although none of the five flown missions had a payload requirement for this service.

Control[edit]

SpaceX uses multiple redundant flight computers in a fault-tolerant design. Each Merlin engine is controlled by three voting computers, each of which has two physical processors that constantly check each other. The software runs on Linux and is written in C++.

For flexibility, commercial off-the-shelf parts and system-wide "radiation-tolerant" design are used instead of rad-hardened parts.[8]

Development and production[edit]

From left to right, Falcon 1, Falcon 9 v1.0, three versions of Falcon 9 v1.1, and two versions of Falcon Heavy. (not all versions have flown)

Funding[edit]

While SpaceX spent its own money to develop its first launch vehicle, the Falcon 1, the development of the Falcon 9 was accelerated by the purchase of several demonstration flights by NASA. This started with seed money from the Commercial Orbital Transportation Services (COTS) program in 2006.[9] SpaceX was selected from more than twenty companies that submitted COTS proposals.[10] Without the NASA money, development would have taken longer, Musk said.[11]

SpaceX estimated that development costs for Falcon 9 are on the order of $300 million.[11] NASA evaluated Falcon 9 development costs using the NASA‐Air Force Cost Model (NAFCOM)—a traditional cost-plus contract approach for US civilian and military space procurement—at US$$3.6 billion based on a NASA environment/culture, or US$$1.6 billion using a more commercial approach.[12]

Production[edit]

In December 2010, the SpaceX production line was manufacturing one new Falcon 9 (and Dragon spacecraft) every three months, with a plan to double the production rate to one every six weeks in 2012.[13]

Reusability testing[edit]

SpaceX ran a limited set of post-mission booster recovery flight tests on the early Falcon rocket launches, both Falcon 1 and Falcon 9. The initial parachute-based design approach was ultimately unsuccessful, and the company adopted a new propulsive-return design methodology that would utilize the Falcon 9 v1.1 vehicle for orbital recovery testing, but did use a Falcon 9 v1.0 booster tank for low-altitude low-velocity flight testing in 2012–2013.

From early days in the development of the Falcon 9, SpaceX had expressed hopes that both stages would eventually be reusable. The initial SpaceX design for stage reusability included adding lightweight thermal protection system (TPS) capability to the booster stage and utilizing parachute recovery of the separated stage. However, early test results were not successful,[14] leading to abandonment of that approach and the initiation of a new design.

In 2011 SpaceX began a formal and funded development program—the SpaceX reusable launch system development program—with the objective of designing reusable first and second stages utilizing propulsive return of the stages to the launch pad. The early program focus, however, is only on return of the first stage.[15]

As an early component of that multi-year program, a Falcon 9 v1.0 first stage tank, 32 metres (106 ft) long, was used to build and test the Grasshopper prototype test vehicle, which made eight successful low-altitude takeoffs and vertical landings in 2012–2013 before the vehicle was retired.

Launch history[edit]

See also[edit]

References[edit]

  1. ^ a b c d e f "Falcon 9". SpaceX. Archived from the original on 23 March 2012. Retrieved 28 September 2013. 
  2. ^ "Detailed Mission Data – Falcon-9 ELV First Flight Demonstration". Mission Set Database. NASA GSFC. Retrieved 2010-05-26. 
  3. ^ "SpaceX Falcon 9 Upper Stage Engine Successfully Completes Full Mission Duration Firing" (Press release). SpaceX. March 10, 2009. 
  4. ^ a b c d "Falcon 9 Overview". SpaceX. 8 May 2010. 
  5. ^ Mission Status Center, June 2, 2010, 1905 GMT, SpaceflightNow, accessed 2010-06-02, Quotation: "The flanges will link the rocket with ground storage tanks containing liquid oxygen, kerosene fuel, helium, gaseous nitrogen and the first stage ignitor source called triethylaluminum-triethylborane, better known as TEA-TEB."
  6. ^ Klotz, Irene (2013-09-06). "Musk Says SpaceX Being "Extremely Paranoid" as It Readies for Falcon 9’s California Debut". Space News. Retrieved 2013-09-13. 
  7. ^ a b "Falcon 9 Launch Vehicle Payload User’s Guide, 2009". SpaceX. 2009. Retrieved 2010-02-03. 
  8. ^ Svitak, Amy (2012-11-18). "Dragon's "Radiation-Tolerant" Design". Aviation Week. Retrieved 2012-11-22. 
  9. ^ Mr. Alan Lindenmoyer, Manager, NASA Commercial Crew & Cargo Program, quoted in Minutes of the NAC Commercial Space Committee, April 26, 2010
  10. ^ "Private ventures vie to service space station". MSNBC. 2006-03-20. Retrieved 2013-12-02. 
  11. ^ a b "The Facts about SpaceX Costs". spacex.com. May 4, 2011. 
  12. ^ "Falcon 9 Launch Vehicle NAFCOM Cost Estimates". NASA. August 2011. Retrieved 2013-12-02. 
  13. ^ Chow, Denise (2010-12-08). "Q & A with SpaceX CEO Elon Musk: Master of Private Space Dragons". space.com. Retrieved 2013-12-02. "now have Falcon 9 and Dragon in steady production at approximately one F9/Dragon every three months. The F9 production rate doubles to one every six weeks in 2012." 
  14. ^ "Musk ambition: SpaceX aim for fully reusable Falcon 9". NASAspaceflight.com. 2009-01-12. Retrieved 2013-05-09. "With Falcon I’s fourth launch, the first stage got cooked, so we’re going to beef up the Thermal Protection System (TPS). By flight six we think it’s highly likely we’ll recover the first stage, and when we get it back we’ll see what survived through re-entry, and what got fried, and carry on with the process. That’s just to make the first stage reusable, it’ll be even harder with the second stage – which has got to have a full heatshield, it’ll have to have deorbit propulsion and communication." 
  15. ^ Simberg, Rand (2012-02-08). "Elon Musk on SpaceX’s Reusable Rocket Plans". Popular Mechanics. Retrieved 2013-03-08.