Falling film evaporator

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Fig. 1 - A falling film triple effect evaporator for caustic soda

A falling film evaporator is an industrial device to concentrate solutions, especially with heat sensitive components. The evaporator is a special type of heat exchanger.

General[edit]

In general evaporation takes place inside vertical tubes, but there are also applications where the process fluid evaporates on the outside of horizontal or vertical tubes. In all cases, the process fluid to be evaporated flows downwards by gravity as a continuous film. The fluid will create a film along the tube walls, progressing downwards (falling) - hence the name. ↵The fluid distributor has to be designed carefully in order to maintain an even liquid distribution for all tubes along which the solution falls. A typical distributor is shown in Fig. 2; these distributors are usually called ferrules due to their concentric shape. In the majority of applications the heating medium is placed on the outside of the tubes. High heat transfer coefficients are required in order to achieve equally balanced heat transfer resistances. Therefore, condensing steam is commonly used as a heating medium.

Fig. 2 - Falling Film Evaporator Ferrule

For internally evaporating fluids, separation between the liquid phase (the solution) and the gaseous phase takes place inside the tubes. In order to maintain conservation of mass as this process proceeds, the downward vapor velocity increases, increasing the shear force acting on the liquid film and therefore also the velocity of the solution. The result can be a high film velocity of a progressively thinner film resulting in increasingly turbulent flow. The combination of these effects allows very high heat transfer coefficients.

The heat transfer coefficient on the evaporating side of the tube is mostly determined by the hydrodynamic flow conditions of the film. For low massflows or high viscosities the film flow can be laminar, in which case heat transfer is controlled purely by conduction through the film. Therefore in this condition the heat transfer coefficient decreases with increased mass flow. With increased mass flow the film becomes wavy laminar and then turbulent. Under turbulent conditions the heat transfer coefficient increases with increased flow. Evaporation takes place at very low mean temperature differences between heating medium and process stream, typically between 3 - 6K, therefore these devices are ideal for heat recovery in multi stage processes.[1][2] A further advantage of the falling film evaporator is the very short residence time of the liquid and the absence of superheating of the same. Not considering the vapour separator, the residence time inside the tubes is measured in seconds, making it ideal for heat-sensitive products such as milk, fruit juice, pharmaceuticals, and many others. Falling film evaporators are also characterised by very low pressure drops; therefore, they are often used in deep vacuum applications.

Fouling[edit]

Due to the intimate contact of the liquid with the heating surface, these evaporators are sensitive to fouling from precipitating solids; liquor velocity, typically low at liquor inlet (see above) is usually not sufficient to perform an effective self-cleaning of the tubes. Falling film evaporators are therefore used in clean, non-precipitating liquids. A typical application, in chemical industry, is for concentration of caustic soda.

References[edit]

  1. ^ Chun, K. R.; Seban, R. A. (1971). "Heat transfer to evapaporating liquid films". Journal of Heat Transfer 93 (197): 391–396. doi:10.1115/1.3449836. 
  2. ^ Alhusseini, A; Tuzla, K; Chen, J (1998). "Falling film evaporation of single component liquids". International Journal of Heat and Mass Transfer 41 (12): 1623–1632. doi:10.1016/S0017-9310(97)00308-6. 

External links[edit]