Fludeoxyglucose (18F)

From Wikipedia, the free encyclopedia
  (Redirected from Fludeoxyglucose)
Jump to: navigation, search
Fluorodeoxyglucose (18F)
Stereo skeletal formula of fluorodeoxyglucose (18F) ((2S,6R)-6-meth,-2-ol)
Identifiers
Abbreviations [18F]FDG
CAS number 105851-17-0 (2S,6R)-6-meth,-2-ol N
ChemSpider 396785 YesY, 8096174 (2R,6R)-6-meth,-2-ol YesY, 9644274 (6R)-6-meth YesY
KEGG D01843 N
ChEBI CHEBI:49130 N
ChEMBL CHEMBL497613 N
ATC code V09IX04
Beilstein Reference 2047723
Jmol-3D images Image 1
Properties
Molecular formula C6H1118FO5
Molar mass 181.1495 g mol-1
Melting point 170 to 176 °C (338 to 349 °F; 443 to 449 K)
Pharmacology
Routes of
administration
Intravenous
Metabolism 6-Phosphorylation

Glycolysis

Elimination
half-life
110 min (at 70%)

16 min (at 20%)

Excretion 20% Radioactivity renally excreted in 2 hours
Pregnancy
category
X(AU)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 N (verify) (what is: YesY/N?)
Infobox references

Fludeoxyglucose (18F) (INN), or fludeoxyglucose F 18 (USAN and USP), also commonly called fluorodeoxyglucose and abbreviated [18F]FDG, 18F-FDG or FDG, is a radiopharmaceutical used in the medical imaging modality positron emission tomography (PET). Chemically, it is 2-deoxy-2-(18F)fluoro-D-glucose, a glucose analog, with the positron-emitting radioactive isotope fluorine-18 substituted for the normal hydroxyl group at the 2' position in the glucose molecule.

The uptake of 18F-FDG by tissues is a marker for the tissue uptake of glucose, which in turn is closely correlated with certain types of tissue metabolism. After 18F-FDG is injected into a patient, a PET scanner can form two-dimensional or three-dimensional images of the distribution of 18F-FDG within the body.

Since its development in 1976, 18F-FDG had a profound influence on research in the neurosciences.[1] The subsequent discovery 1980 that 18F-FDG accumulates in tumors underpins the evolution of PET as a major clinical tool in cancer diagnosis.[2] 18F-FDG is now the standard radiotracer used for PET neuroimaging and cancer patient management.[3]

The images can be assessed by a nuclear medicine physician or radiologist to provide diagnoses of various medical conditions.

History[edit]

In 1968, Dr. Josef Pacak, Zdenek Tocik and Miloslav Cerny at the Department of Organic Chemistry, Charles University, Czechoslovakia were the first to describe the synthesis of FDG.[4] Later, in the 1970s, Tatsuo Ido and Al Wolf at the Brookhaven National Laboratory were the first to describe the synthesis of FDG labeled with 18F.[5] The compound was first administered to two normal human volunteers by Abass Alavi in August, 1976 at the University of Pennsylvania. Brain images obtained with an ordinary (non-PET) nuclear scanner demonstrated the concentration of 18F-FDG in that organ (see history reference below).

Synthesis[edit]

18F-FDG was first synthesized via electrophilic fluorination with 18F2. Subsequently, a "nucleophilic synthesis" was devised with the same radioisotope.

As with all radioactive 18F-labeled radioligands, the 18F must be made initially as the fluoride anion in a cyclotron. Synthesis of complete FDG radioactive tracer begins with synthesis of the unattached fluoride radiotracer, since cyclotron bombardment destroys organic molecules of the type usually used for ligands, and in particular, would destroy glucose.

Cyclotron production of 18F may be accomplished by bombardment of neon-20 with deuterons, but usually is done by proton bombardment of 18O-enriched water, causing a (p,n) reaction (sometimes called a "knockout reaction"—a common type of nuclear reaction with high probability) in the 18O. This produces "carrier-free" dissolved 18F-fluoride (18F) ions in the water. The 109.8 minute half-life of 18F makes rapid and automated chemistry necessary after this point.

Anhydrous fluoride salts, which are easier to handle than fluorine gas, can be produced in a cyclotron.[6] To achieve this chemistry, the 18F is separated from the aqueous solvent by trapping it on an ion-exchange column, and eluted with an acetonitrile solution of 2,2,2-cryptand and potassium carbonate. Evaporation of the eluate gives [(crypt-222)K]+ 18F (2) .

The fluoride anion is nucleophilic but its anhydrous conditions are required to avoid competing reactions involving hydroxide, which is also a good nucleophile. The use of the cryptand to sequester the potassium ions avoids ion-pairing between free potassium and fluoride ions, rendering the fluoride anion more reactive.

Intermediate 2 is treated with a protected mannose triflate (1); the fluoride anion displaces the triflate leaving group in an SN2 reaction, giving the protected fluorinated deoxyglucose (3). Base hydrolysis removes the acetyl protecting groups, giving the desired product (4) after removing the cryptand via ion-exchange:[7][8]

Synthesis of 18FDG.png

Mechanism of action, metabolic end-products, and metabolic rate[edit]

18F-FDG, as a glucose analog, is taken up by high-glucose-using cells such as brain, kidney, and cancer cells, where phosphorylation prevents the glucose from being released again from the cell, once it has been absorbed. The 2' hydroxyl group (—OH) in normal glucose is needed for further glycolysis (metabolism of glucose by splitting it), but 18F-FDG is missing this 2' hydroxyl. Thus, in common with its sister molecule 2-deoxy-D-glucose, FDG cannot be further metabolized in cells. The 18F-FDG-6-phosphate formed when 18F-FDG enters the cell thus cannot move out of the cell before radioactive decay. As a result, the distribution of 18F-FDG is a good reflection of the distribution of glucose uptake and phosphorylation by cells in the body.

After 18F-FDG decays radioactively, however, its 2'-fluorine is converted to 18O, and after picking up a proton H+ from a hydronium ion in its aqueous environment, the molecule becomes glucose-6-phosphate labeled with harmless nonradioactive "heavy oxygen" in the hydroxyl at the 2' position. The new presence of a 2' hydroxyl now allows it to be metabolized normally in the same way as ordinary glucose, producing non-radioactive end-products.

Although in theory all 18F-FDG is metabolized as above with a radioactivity elimination half-life of 110 minutes (the same as that of fluorine-18), clinical studies have shown that the radioactivity of 18F-FDG partitions into two major fractions. About 75% of the fluorine-18 activity remains in tissues and is eliminated with a half-life of 110 minutes, presumably by decaying in place to O-18 to form 18O-glucose-6-phosphate, which is non-radioactive (this molecule can soon be metabolized to carbon dioxide and water, after nuclear transmutation of the fluorine to oxygen ceases to prevent metabolism). Another fraction of 18F-FDG, representing about 20% of the total fluorine-18 activity of an injection, is eliminated renally by two hours after a dose of 18F-FDG, with a rapid half-life of about 16 minutes (this portion makes the renal-collecting system and bladder prominent in a normal PET scan). This short biological half-life indicates that this 20% portion of the total fluorine-18 tracer activity is eliminated pharmacokinetically (through the renal system) much more quickly than the isotope itself can decay. The rapidity also suggests that some of this 18F is no longer attached to glucose, since low concentrations of glucose in the blood are retained by the normal kidney and not passed into the urine. Because of this rapidly excreted urine 18F, the urine of a patient undergoing a PET scan may therefore be especially radioactive for several hours after administration of the isotope.[9]

All radioactivity of 18F-FDG, both the 20% which is rapidly excreted in the first several hours of urine which is made after the exam, and the 80% which remains in the patient, decays with a half-life of 110 minutes (just under 2 hours). Thus, within 24 hours (13 half-lives after the injection), the radioactivity in the patient and in any initially voided urine which may have contaminated bedding or objects after the PET exam, will have decayed to 2−13 = 1/8192 of the initial radioactivity of the dose. In practice, patients who have been injected with 18F-FDG are told to avoid the close vicinity of especially radiation-sensitive persons such as infants, children and pregnant women, for at least 12 hours (7 half-lives, or decay to 1/128th the initial radioactive dose).

Distribution[edit]

The labeled 18F-FDG compound has a relatively short shelf life which is dominated by the physical decay of 18F with a half-life of 109.8 minutes, or slightly less than 2 hours. Still, this half life is sufficiently long to allow shipping the compound to remote PET scanning facilities, in contrast to other medical radioisotopes like 11C. Due to transport regulations for radioactive compounds, delivery is normally done by specially licensed road transport, but means of transport may also include dedicated small commercial jet services. Transport by air allows to expand the distribution area around a 18F-FDG production site to deliver the compound to PET scanning centres even hundreds of miles away.

Recently, on-site cyclotrons with integral shielding and portable chemistry stations for making 18F-FDG have accompanied PET scanners to remote hospitals. This technology holds some promise in the future, for replacing some of the scramble to transport 18F-FDG from site of manufacture to site of use.[10]

Applications[edit]

Whole-body PET scan using 18F-FDG to show liver metastases of a colorectal tumor

In PET imaging, 18F-FDG can be used for the assessment of glucose metabolism in the heart, lungs,[11] and the brain. It is also used for imaging tumors in oncology, where a static 18F-FDG PET scan is performed and the tumor 18F-FDG uptake is analyzed in terms of Standardized Uptake Value (SUV). 18F-FDG is taken up by cells, phosphorylated by hexokinase (whose mitochondrial form is greatly elevated in rapidly growing malignant tumours),[12] and retained by tissues with high metabolic activity, such as most types of malignant tumours. As a result FDG-PET can be used for diagnosis, staging, and monitoring treatment of cancers, particularly in Hodgkin's disease, non-Hodgkin's lymphoma, colorectal cancer, breast cancer, melanoma, and lung cancer. It has also been approved for use in diagnosing Alzheimer's disease.

In body-scanning applications in searching for tumor or metastatic disease, a dose of 18F-FDG in solution (typically 5 to 10 millicurie, 200 to 400 MBq) is typically injected rapidly into a saline drip running into a vein, in a patient who has been fasting for at least 6 hours, and who has a suitably low blood sugar. (This is a problem for some diabetics; usually PET scanning centers will not administer the isotope to patients with blood glucose levels over about 180 mg/dL = 10 mmol/L, and such patients must be re-scheduled). The patient must then wait about an hour for the sugar to distribute and be taken up into organs which use glucose – a time during which physical activity must be kept to a minimum, in order to minimize uptake of the radioactive sugar into muscles (this causes unwanted artifacts in the scan, interfering with reading especially when the organs of interest are inside the body vs. inside the skull). Then, the patient is placed in the PET scanner for a series of one or more scans which may take from 20 minutes to as long as an hour (often, only about one quarter of the body length may be imaged at a time).

References[edit]

  1. ^ Newberg A, Alavi A, Reivich M (2002). "Determination of regional cerebral function with FDG-PET imaging in neuropsychiatric disorders". Semin Nucl Med 32 (1): 13–14. doi:10.1053/snuc.2002.29276. PMID 11839066. 
  2. ^ Som P, Atkins HL, Bandoypadhyay D, Fowler JS, MacGregor RR, Matsui K, Oster ZH, Sacker DF, Shiue CY, Turner H, Wan CN, Wolf AP, Zabinski SV (1980). "A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): Nontoxic tracer for rapid tumor detection". J Nucl Med 21 (7): 670–675. PMID 7391842. 
  3. ^ Kelloff GJ, Hoffman JM, Johnson B, Scher HI, Siegel BA, Cheng EY, Cheson BD, O'shaughnessy J, Guyton KZ, Mankoff DA, Shankar L, Larson SM, Sigman CC, Schilsky RL, Sullivan DC (2005). "Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development.". Clin Cancer Res. 11: 2785–2808. doi:10.1158/1078-0432.CCR-04-2626. PMID 15837727. 
  4. ^ Pacak J, Tocik Z, Cerny M (1969). "Synthesis of 2-Deoxy-2-fluoro-D-glucose". Journal of the Chemical Society D: CHEMICAL COMMUNICATION: 77–77. doi:10.1039/C29690000077. 
  5. ^ Ido T, Wan CN, Casella V, Fowler JS, Wolf AP, Reivich M, and Kuhl DE (1978). "Labeled 2-deoxy-D-glucose analogs: 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose". J Labeled Compounds Radiopharm 24: 174–183. 
  6. ^ Janet Miller, Radiopharmaceutical development at the Massachusetts General hospital, retrieved June 12, 2013 
  7. ^ Fowler JS, Ido T (2002). "Initial and subsequent approach for the synthesis of 18FDG". Semin Nucl Med 32 (1): 6–12. doi:10.1053/snuc.2002.29270. PMID 11839070. 
  8. ^ Yu, S (2006). "Review of 18F-FDG synthesis and quality control". Biomedical Imaging and Intervention Journal 2. doi:10.2349/biij.2.4.e57. 
  9. ^ "Fludeoxyglucose drug information". Retrieved 30 June 2009. 
  10. ^ Lisa Fratt (2003). "Radiation Testing and PET Minding the Radiopharmaceutical Store". Medical Imaging. 
  11. ^ Gray's Anatomy for Students, Drake et al., 2005
  12. ^ Ernesto Bustamante; Peter L. Pedersen (1977). "High Aerobic Glycolysis of Rat Hepatoma Cells in Culture: Role of Mitochondrial Hexokinase". Proceedings of the National Academy of Sciences 74 (9): 3735–9. Bibcode:1977PNAS...74.3735B. doi:10.1073/pnas.74.9.3735. PMC 431708. PMID 198801.