Foresight Institute Feynman Prize in Nanotechnology

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Feynman Prize in Nanotechnology
Awarded for Experimental and theoretical advancements in nanotechnology research
Country United States
Presented by Foresight Institute
First awarded 1993
Official website http://www.foresight.org/prize/

The Feynman Prize in Nanotechnology is an award given by the Foresight Institute every year for significant advancements in nanotechnology. It is named in honor of physicist Richard Feynman, whose 1959 talk There's Plenty of Room at the Bottom is considered to have inspired the beginning of the field of nanotechnology.

The prize was established "to recognize researchers whose recent work has most advanced the field toward the achievement of Feynman's vision for nanotechnology: molecular manufacturing, the construction of atomically precise products through the use of molecular machine systems."[1]

The Foresight Institute also offers the Feynman Grand Prize, a $250,000 award to the first persons to create both a nanoscale robotic arm capable of precise positional control, and a nanoscale 8-bit adder, conforming to given specifications. The Grand Prize is intended to stimulate the field of molecular nanotechnology in the same way as similar historical prizes such as the Longitude prize, Orteig Prize, Kremer prize, Ansari X Prize, and two prizes that were offered by Richard Feynman himself as challenges during his 1959 There's Plenty of Room at the Bottom talk.[2]

The Foresight Institute has offered a number of additional awards as well. The Prize in Communication for journalism and outreach efforts which promote public understanding of molecular nanotechnology was awarded from 2000 to 2007, and a Government Prize to recognize government officials was awarded in 2005. A Distinguished Student Award for graduate and undergraduate students was awarded from 1997 to 2007, and resumed in 2012.[3][4]

Feynman prize winners[edit]

The prize was first given in 1993. Before 1997, one prize was given biennially. From 1997 on, two prizes were given each year in Theory and Experimental categories.

Single prize[edit]

Year Laureate Institution Rationale
1993 Charles Musgrave California Institute of Technology "for his work on modeling a hydrogen abstraction tool useful in nanotechnology"[5]
1995 Nadrian Seeman.jpg Nadrian C. Seeman New York University "for developing ways to construct three-dimensional structures, including cubes and more complex polyhedra, from synthesized DNA molecules"[6]

Experimental category[edit]

Year Laureate Institution Rationale
1997 James K. Gimzewski IBM Zurich Research Laboratory "for work using scanning probe microscopes to manipulate molecules"[7]
Reto Schlittler
Christian Joachim CEMES/French National Centre for Scientific Research
1998 M. Reza Ghadiri Scripps Research Institute "for groundbreaking work in constructing molecular structures through the use of self-organization, the same forces used to assemble the molecular machine systems found in nature"[8]
1999 Phaedon Avouris IBM Watson Research Center "[for] the development of carbon nanotubes for potential computing device applications"[9]
2000 R. Stanley Williams.jpg R. Stanley Williams HP Labs "for building a molecular switch, a major step toward their long-term goal of building entire memory chips that are just a hundred nanometers wide"[10]
Philip Kuekes
James R. Heath University of California, Los Angeles
2001 Charles M. Lieber Harvard University "for his pioneering experimental work in molecular nanotechnology which included seminal contributions to the synthesis and characterization of the unique physical properties of carbon nanotubes and nanowires"[11]
2002 Mirkin chad lecture.jpg Chad Mirkin Northwestern University "for opening up new possibilities for the fabrication of molecular machine systems by selectively functionalizing nanoparticles and surfaces, particularly with DNA, enabling the self-assembly of new structures which move us closer to the goal of molecular manufacturing"[12]
2003 Carlo Montemagno University of California, Los Angeles "for his pioneering research into methods of integrating single molecule biological motors with nano-scale silicon devices, which opens up new possibilities for nanomachines"[13]
2004 Homme Hellinga Duke University "for his achievement in the engineering of atomically precise devices capable of precise manipulation of other molecular structures"[14]
2005 Christian Schafmeister University of Pittsburgh "for his work in developing a novel technology synthesizing macromolecules of intermediate sizes (between 1000 and 10,000 Daltons) with designed shapes and functions"[15]
2006 Erik Winfree California Institute of Technology "for their work demonstrating that DNA tiles can be designed to form crystalline nanotubes that exhibit a stiffness greater than the biological protein nanofilament actin, [and for having] established that algorithmic self-assembly could work well enough to generate non-trivial non-periodic patterns"[16]
Paul W. K. Rothemund
2007 J. Fraser Stoddart University of California, Los Angeles "[for having] pioneered the synthesis and assembly of unique active molecular machines for manufacturing into practical nanoscale devices"[17]
2008 James Tour Rice University "for the Synthesis of Nanocars... and other molecular machines [which] is providing critical insight in investigations of bottom-up molecular manufacturing"[18]
2009 Yoshiaki Sugimoto Osaka University "in recognition of their pioneering experimental demonstrations of mechanosynthesis, specifically the use of atomic resolution dynamic force microscopy — also known as non-contact atomic force microscopy (NC-AFM) — for vertical and lateral manipulation of single atoms on semiconductor surfaces"[19]
Masayuki Abe
Oscar Custance Japanese National Institute for Materials Science
2010 Masakazu Aono MANA Center, Japanese National Institute for Materials Science "in recognition of his pioneering and continuing work, including research into the manipulation of atoms, the multiprobe STM and AFM, the atomic switch, and single-molecule-level chemical control including ultradense molecular data storage and molecular wiring; and his inspiration of an entire generation of researchers who have made their own ground-breaking contributions to nanotechnology"[1]
2011 Leonhard Grill Fritz Haber Institute of the Max Planck Society "in recognition of his pioneering and continuing work on manipulating and structuring functional matter at the atomic scale"[20]
2012 Gerhard Meyer IBM Zurich Research Laboratory "[for] their remarkable experiments advancing the frontiers of scanning probe microscopy. They were the first to produce images of molecular orbitals and charges detailed enough to identify the structure of individual molecules, as well as metal-molecule complexes. They have also been able to precisely make and break individual chemical bonds."[21]
Leo Gross
Jascha Repp
2013 Alexander Zettl University of California, Berkeley "[for] exceptional work in the fabrication of nanoscale electromechanical systems (NEMS), spanning multiple decades and including carbon nanotube-based bearings, actuators, and sensors brought to fruition with cutting-edge nanoscale engineering"[22]

Theory category[edit]

Year Laureate Institution/Country Rationale
1997 Charles Bauschlicher NASA Ames Research Center "for work in computational nanotechnology"[7]
Stephen Barnard
Creon Levit
Glenn Deardorff
Al Globus
Jie Han
Richard Jaffe
Alessandra Ricca
Marzio Rosi
Deepak Srivastava
H. Thuemmel
1998 Ralph C. Merkle Zyvex "for their computational modeling of molecular tools for atomically-precise chemical reactions"[8]
Stephen Walch ELORET Corporation/NASA Ames Research Center
1999 William A. Goddard III California Institute of Technology "for their work in modeling the operation of molecular machine designs"[9]
Tahir Cagin
Yue Qi
2000 Uzi Landman Georgia Institute of Technology "for his pioneering work in computational materials science for nanostructures"[10]
2001 Mark Ratner at NIH.jpg Mark A. Ratner Northwestern University "[for being] a theorist whose work has made major contributions to the development and success of nanometer-scale electronic devices"[11]
2002 Don Brenner North Carolina State University "for fundamental advances in our ability to model molecular machine systems, and for the design and analysis of components likely to be important in future molecular manufacturing systems"[12]
2003 Marvin L. Cohen University of California, Berkeley "for their contributions to the understanding of the behavior of materials"[13]
Steven G. Louie
2004 David Baker University of Washington "for their development of RosettaDesign, a program that has a high success rate in designing stable protein structures with a specified backbone folding structure"[14]
Brian Kuhlman University of North Carolina, Chapel Hill
2005 Christian Joachim French National Centre for Scientific Research "for developing theoretical tools and establishing the principles for design of a wide variety of single molecular functional nanomachines"[15]
2006 Erik Winfree California Institute of Technology "for their 'Theory in Molecular Computation and Algorithmic Self-assembly' research... based on their demonstration of methods for universal computation with DNA, including using DNA tiles to simulate cellular automata"[16]
Paul W. K. Rothemund
2007 David A. Leigh University of Edinburgh "[for] the design and synthesis of artificial molecular motors and machines from first principles and... the construction of molecular machine systems that function in the realm of Brownian motion"[17]
2008 George C. Schatz Northwestern University "first for sophisticated modeling and optimization of the dip pen nanolithography method of nanofabrication, and second, for his explanation of plasmon effects in metallic nanodots"[18]
2009 Robert A. Freitas Jr. Institute for Molecular Manufacturing "in recognition of his pioneering theoretical work in mechanosynthesis in which he proposed specific molecular tools and analyzed them using ab initio quantum chemistry to validate their ability to build complex molecular structures, [and] also his previous work in systems design of molecular machines, including replicating molecular manufacturing systems, which should eventually be able to make large atomically precise products economically, and the design of medical nanodevices, which should eventually revolutionize medicine"[19]
2010 Gustavo E. Scuseria Rice University "for his development of quantum mechanical methods and computational programs that make it possible to carry out accurate theoretical predictions of molecules and solids, and their application to the chemical and electronic properties of carbon nanostructures"[1]
2011 Raymond Astumian University of Maine "for his contributions to the understanding of Brownian motion and its use to power molecular motors and other functional mechanisms at the atomic scale"[20]
2012 David Soloveichik University of California, San Francisco "for his general theory of DNA displacement cascades. He has shown that systems of DNA molecules can be designed with arbitrary dynamic behavior. In particular, he has shown that they are Turing-complete, and so can be made to run any general-purpose computer program."[21]
2013 David Beratan Duke University "[for the] development of theoretical approaches to understand the function of complex molecular and macromolecular assemblies and machines."[22]

See also[edit]

References[edit]

  1. ^ a b c "2010 Foresight Institute Feynman Prize". Foresight Nanotech Institute. 20 December 2010. Retrieved 10 April 2011. 
  2. ^ "Feynman Grand Prize". Foresight Nanotech Institute. Retrieved 10 April 2011. 
  3. ^ "Foresight Institute Prize Descriptions and Applications". Foresight Nanotech Institute. Retrieved 10 April 2011. 
  4. ^ "Nanotechnology Prizes and Awards Sponsored by Foresight Nanotech Institute". Foresight Nanotech Institute. Retrieved 18 March 2012. 
  5. ^ "First Feynman Prize in Nanotechnology Awarded". Foresight Update. Foresight Nanotech Institute. 15 December 1993. Retrieved 10 April 2011. 
  6. ^ Phelps, Lewis M. (30 November 1995). "1995 Feynman Prize in Nanotechnology Awarded". Foresight Update. Foresight Nanotech Institute. Retrieved 10 April 2011. 
  7. ^ a b "1997 Feynman Prize in Nanotechnology Awarded to Teams at IBM Zurich and at NASA Ames". Foresight Nanotech Institute. Retrieved 10 April 2011. 
  8. ^ a b "1998 Feynman Prize in Nanotechnology". Foresight Nanotech Institute. Retrieved 10 April 2011. 
  9. ^ a b "1999 Feynman Prize in Nanotechnology". Foresight Nanotech Institute. Retrieved 10 April 2011. 
  10. ^ a b "2000 Feynman Prize in Nanotechnology". Foresight Nanotech Institute. Retrieved 10 April 2011. 
  11. ^ a b "2001 Feynman Prize in Nanotechnology". Foresight Nanotech Institute. Retrieved 10 April 2011. 
  12. ^ a b "2002 Foresight Institute Feynman Prize". Foresight Nanotech Institute. Retrieved 10 April 2011. 
  13. ^ a b "2003 Foresight Institute Feynman Prize". Foresight Nanotech Institute. Retrieved 10 April 2011. 
  14. ^ a b "2004 Foresight Institute Feynman Prize". Foresight Nanotech Institute. Retrieved 10 April 2011. 
  15. ^ a b "2005 Foresight Institute Feynman Prize". Foresight Nanotech Institute. Retrieved 10 April 2011. 
  16. ^ a b "2006 Foresight Institute Feynman Prize". Foresight Nanotech Institute. Retrieved 10 April 2011. 
  17. ^ a b "2007 Foresight Institute Feynman Prize". Foresight Nanotech Institute. Retrieved 10 April 2011. 
  18. ^ a b "2008 Foresight Institute Feynman Prize". Foresight Nanotech Institute. Retrieved 10 April 2011. 
  19. ^ a b "2009 Foresight Institute Feynman Prize". Foresight Nanotech Institute. 6 October 2009. Retrieved 10 April 2011. 
  20. ^ a b "2011 Foresight Institute Feynman Prize". Foresight Nanotech Institute. 16 October 2012. Retrieved 20 October 2012. 
  21. ^ a b "2012 Foresight Institute Feynman Prize". Foresight Nanotech Institute. 18 December 2012. Retrieved 18 December 2012. 
  22. ^ a b "2013 Foresight Institute Feynman Prize". Foresight Nanotech Institute. 23 January 2014. Retrieved 25 January 2014. 

External links[edit]