Free-piston engine

From Wikipedia, the free encyclopedia
  (Redirected from Free-piston)
Jump to: navigation, search
Free-piston engine used as a gas generator to drive a turbine

A free-piston engine is a linear, 'crankless' internal combustion engine, in which the piston motion is not controlled by a crankshaft but determined by the interaction of forces from the combustion chamber gases, a rebound device (e.g., a piston in a closed cylinder) and a load device (e.g. a gas compressor or a linear alternator).

The basic configuration of free-piston engines is commonly known as single piston, dual piston or opposed pistons, referring to the number of combustion cylinders. The free-piston engine is in practice restricted to the two-stroke operating principle, since a power stroke is required every fore-and-aft cycle.

First generation[edit]

In 1807, de Rivaz tested an early engine that operated a free piston on a chain.[1] The modern free-piston engine was proposed by R.P. Pescara [2] and the original application was a single piston air compressor. The engine concept was a topic of much interest in the period 1930-1960, and a number of commercially available units were developed. These first generation free-piston engines were without exception opposed piston engines, in which the two pistons were mechanically linked to ensure symmetric motion. The free-piston engines provided some advantages over conventional technology, including compactness and a vibration-free design.

Air compressors[edit]

The first successful application of the free-piston engine concept was as air compressors. In these engines, air compressor cylinders were coupled to the moving pistons, often in a multi-stage configuration. Some of these engines utilised the air remaining in the compressor cylinders to return the piston, thereby eliminating the need for a rebound device.

Free-piston air compressors were in use among others by the German Navy, and had the advantages of high efficiency, compactness and low noise and vibration.[3]

Gas generators[edit]

After the success of the free-piston air compressor, a number of industrial research groups started the development of free-piston gas generators. In these engines there is no load device coupled to the engine itself, but the power is extracted from an exhaust turbine. (The only load for the engine is supercharging the inlet air.)

A number of free-piston gas generators were developed, and such units were in widespread use in large-scale applications such as stationary and marine powerplants.[4] Attempts were made to use free-piston gas generators for vehicle propulsion (e.g. in gas turbine locomotives) but without success.[5][6]

Modern applications[edit]

Modern applications of the free-piston engine concept include hydraulic engines, aimed for off-highway vehicles, and free-piston engine generators, aimed for use with hybrid electric vehicles.

Hydraulic[edit]

These engines are commonly of the single piston type, with the hydraulic cylinder acting as both load and rebound device using a hydraulic control system. This gives the unit high operational flexibility, and excellent part load performance has been reported for such engines.[7][8]

Generators[edit]

The use of a free-piston engine with a linear generator is being investigated by a number of research groups, driven by the increasing interest in the hybrid electric vehicle concept as range extenders in the automotive industry. The first free piston generator was patented in 1959,[9] and since then, a number of variations have been proposed. Examples include the Stelzer engine and the Free Piston Power Pack manufactured by Pempek Systems based on a German patent.[10] An opposed piston free-piston linear generator was demonstrated in 2013 at the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR). [11]

These engines are mainly of the dual piston type, giving a compact unit with high power-to-weight ratio. A challenge with this design is to find an electric machine with sufficiently low weight, and control challenges in the form of high cycle-to-cycle variations have been reported for dual piston engines.[12][13]

In June of 2014 Toyota showed a prototype called the Free Piston Engine Linear Generator (FPEG). As the piston is forced downward during its power stroke, it passes through windings in the cylinder to generate a burst of three-phase AC electricity. It completes a full cycle in only two-strokes but uses the same steps as a traditional four-stroke engine to maintain high efficiency and low emissions. The design utilizes gasoline direct injection and electronically operated valves. The engine can be modified for use with either diesel or petrol and can operate under compression for diesel fuel or under spark for regular gasoline.

Toyota claims a thermal-efficiency rating of 42% in continuous use, greatly exceeding today's average of 25-30%. A two-cylinder FPEG is inherently balanced and Toyota demonstrated a 24 inch long by 2.5 inch in diameter unit that outputs up to 15 hp (greater than 11kW).[14]

Features and potential advantages[edit]

The operational characteristics of free-piston engines differ from those of conventional, crankshaft engines. The main difference is due to the piston motion not being restricted by a crankshaft in the free-piston engine, leading to the potentially valuable feature of variable compression ratio. This does, however, also present a control challenge, since the position of the dead centres must be accurately controlled in order to ensure fuel ignition and efficient combustion, and to avoid excessive in-cylinder pressures or, worse, the piston hitting the cylinder head.

Advantages[edit]

Potential advantages of the free-piston concept include

  • Simple design with few moving parts, giving a compact engine with low maintenance costs and reduced frictional losses.
  • The operational flexibility through the variable compression ratio allows operation optimisation for all operating conditions and multi-fuel operation. The free-piston engine is further well suited for homogeneous charge compression ignition (HCCI) operation.[15]
  • High piston speed around top dead centre (TDC) and a fast power stroke expansion enhances fuel-air mixing and reduces the time available for heat transfer losses and the formation of temperature-dependent emissions such as nitrogen oxides (NOx).[16][17]

Challenges[edit]

The main challenge for the free-piston engine is engine control, which can only be said to be fully solved for single piston hydraulic free-piston engines. Issues such as the influence of cycle-to-cycle variations in the combustion process and engine performance during transient operation in dual piston engines are topics that need further investigation. Crankshaft engines can connect traditional accessories such as alternator, oil pump, fuel pump, cooling system, starter etc.

Rotational movement to spin conventional automobile engine accessories such as alternators, air conditioner compressors, power steering pumps, and anti-pollution devices could be captured from a turbine situated in the exhaust stream.

References[edit]

  1. ^ "Automobile Quarterly". Automobile quarterly (Princeton Institute for Historic Research) 24 (1): 7. 1986. 
  2. ^ Pescara R.P., Motor compressor apparatus, US Patent 1,657,641, 1928.
  3. ^ Toutant W.T., The Worthington–Junkers free-piston air compressor, Journal of the American Society of Naval Engineers 1952:64:583–594.
  4. ^ London A.L., Oppenheim A.K., The free-piston engine development -- Present status and design aspects, Transactions of the ASME 1952:74:1349–1361.
  5. ^ Underwood A.F., The GMR 4-4 ‘‘HYPREX’’ engine – A concept of the free-piston engine for automotive use, SAE Transactions 1957:65:377–391.
  6. ^ Frey D.N. et al., The automotive free-piston-turbine engine, SAE Transactions 1957:65:628–634.
  7. ^ Achten P.A.J. et al., Horsepower with brains: The design of the Chiron free piston engine, SAE Paper 2000–01–2545, 2000.
  8. ^ Brunner H. et al., Renaissance einer Kolbenmachine, Antriebstechnik 2005:4:66–70.
  9. ^ Baruch S.N. Power sources. US Patent 2,900,592, 1959.
  10. ^ Willimczik W. Hubkolbenmaschine mit elektrischem Triebwerk, insbesondere Hubkolben-Lineargenerator, WP113 593, 1974
  11. ^ Prof. Dr.-Ing. Horst E. Friedrich, German Aerospace Center (DLR), [1], 19 February 2013
  12. ^ Clark N. et al., Modelling and development of a linear engine, Proc. ASME Spring Conference, Internal Combustion Engine Division, 1998:30:49–57.
  13. ^ Tikkanen S. et al., First cycles of the dual hydraulic free piston engine, SAE Paper 2000–01–2546, 2000.
  14. ^ Cammisa, Jason (June 30, 2014). "No crankshaft, no problem: Toyota's free piston engine is brilliant". Road and Track. 
  15. ^ Van Blarigan P. Advanced internal combustion electric generator
  16. ^ Mikalsen R, Roskilly A.P. The design and simulation of a two-stroke free-piston compression ignition engine for electrical power generation. Applied Thermal Engineering, Volume 28, Issues 5-6, Pages 589-600, 2008. [2]
  17. ^ Mikalsen R, Roskilly A.P. A computational study of free-piston diesel engine combustion. Applied Energy, Volume 86, Issues 7-8, Pages 1136-1143, 2009. [3]

Sources[edit]

  • Mikalsen R., Roskilly A.P. A review of free-piston engine history and applications. Applied Thermal Engineering, Volume 27, Issues 14-15, Pages 2339-2352, 2007. [4].

External links[edit]