Fundamental theorem on homomorphisms

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In abstract algebra, the fundamental theorem on homomorphisms, also known as the fundamental homomorphism theorem, relates the structure of two objects between which a homomorphism is given, and of the kernel and image of the homomorphism.

The homomorphism theorem is used to prove the isomorphism theorems.

Group theoretic version[edit]

Given two groups G and H and a group homomorphism f : GH, let K be a normal subgroup in G and φ the natural surjective homomorphism GG/K (where G/K is a quotient group). If K is a subset of ker(f) then there exists a unique homomorphism h:G/KH such that f = h φ.

The situation is described by the following commutative diagram:

FundHomDiag.png

By setting K = ker(f) we immediately get the first isomorphism theorem.

Other versions[edit]

Similar theorems are valid for monoids, vector spaces, modules, and rings.

See also[edit]

External links[edit]