Gelfond–Schneider theorem

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In mathematics, the Gelfond–Schneider theorem establishes the transcendence of a large class of numbers. It was originally proved independently in 1934 by Aleksandr Gelfond[1] and Theodor Schneider. The Gelfond–Schneider theorem answers affirmatively Hilbert's seventh problem.

Statement[edit]

If a and b are algebraic numbers with a ≠ 0,1 and if b is not a rational number, then ab is a transcendental number.

Comments[edit]

  • The values of a and b are not restricted to real numbers; complex numbers are allowed (they are never rational when they have an imaginary part not equal to 0, even if both the real and imaginary parts are rational).
  • In general, ab = exp(b log a) is multivalued, where "log" stands for the complex logarithm. This accounts for the phrase "any value of" in the theorem's statement.
  • An equivalent formulation of the theorem is the following: if α and γ are nonzero algebraic numbers, and we take any non-zero logarithm of α, then (log γ)/(log α) is either rational or transcendental. This may be expressed as saying that if log α, log γ are linearly independent over the rationals, then they are linearly independent over the algebraic numbers. The generalisation of this statement to several logarithms of algebraic numbers is in the domain of transcendence theory.
  • If the restriction that a and b be algebraic is removed, the statement does not remain true in general. For example,
{\left(\sqrt{2}^{\sqrt{2}}\right)}^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} \cdot \sqrt{2}} = \sqrt{2}^2 = 2.
Here, a is √2√2, which (as proven by the theorem itself) is transcendental rather than algebraic. Similarly, if a = 3 and b = (log 2)/(log 3), which is transcendental, then ab = 2 is algebraic. A characterization of the values for a and b, which yield a transcendental ab, is not known.

Corollaries[edit]

The transcendence of the following numbers follows immediately from the theorem:

See also[edit]

References[edit]

  1. ^ Aleksandr Gelfond (1934). "Sur le septième Problème de Hilbert". Bulletin de l'Académie des Sciences de l'URSS. Classe des sciences mathématiques et na VII (4): 623–634. 

External links[edit]