Geology of the Himalaya

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Fig 1: The earth in the Early Permian. At that time, India is part of Gondwana and bordered to the north by the Cimmerian Superterrane. Paleogeographic reconstructions. By Dèzes (1999), based on Stampfli & Borel (2002) and Patriat & Achache (1984).[1]
Fig 2: The earth at the Permian-Triassic boundary. The opening of the Neotethys separates the Cimmeridian Superterrane from Gondwana. Based on Stampfli & Borel (2002) and Patriat & Achache (1984).[2]
Fig 3: The earth in the Cretaceous. The Cimmeridian Superterrane has accreted to Mega Laurasia, the oceanic crust of the Neotethys is subducted to the north along the Dras volcanic arc , the Shigatze Ocean opens as a consequence of back-arc spreading, India is separated from Africa and E. Gondwana and the Indian Ocean opens. Paleogeographic reconstructions based by Dèzes (1999), on Stampfli & Borel (2002) and Patriat & Achache (1984).
Fig 4: The northward drift of India from 71 Ma ago to present time. Note the simultaneous counter-clockwise rotation of India. Collision of the Indian continent with Eurasia occurred at about 55 Ma. Source: www.usgs.org (modified)
Fig 5: Geologic - Tectonic map of the Himalaya, modified after Le Fort & Cronin (1988).
Fig 6: Geological Map of the NW Himalaya; for references, see image description or bibliography. HHCS: High Himalayan Cristalline Sequence; ISZ: Indus Suture Zone; KW: Kishtwar Window; LKRW: Larji-Kulu-Rampur Window; MBT: Main Boundary Thrust; MCT: Main Central Thrust; SF: Sarchu Fault; ZSZ: Zanskar Shear Zone. (Download map in PDF format).
Fig 7: Simplified cross-section of the north-western Himalaya showing the main tectonic units and structural elements by Dèzes (1999). (Download in PDF format)

The geology of the Himalaya is a record of the most dramatic and visible creations of modern plate tectonic forces. The Himalayas, which stretch over 2400 km between the Namche Barwa syntaxis in Tibet and the Nanga Parbat syntaxis in India, are the result of an ongoing orogeny — the result of a collision between two continental tectonic plates. This immense mountain range was formed by tectonic forces and sculpted by weathering and erosion. The Himalaya-Tibet region supplies freshwater for more than one-fifth of the world population, and accounts for a quarter of the global sedimentary budget. Topographically, the belt has many superlatives: the highest rate of uplift (nearly 10 mm/year at Nanga Parbat), the highest relief (8848 m at Mt. Everest Chomolangma), among the highest erosion rates at 2–12 mm/yr,[3] the source of some of the greatest rivers and the highest concentration of glaciers outside of the polar regions. This last feature earned the Himalaya its name, originating from the Sanskrit for "the abode of the snow".

The making of the Himalaya[edit]

During Late Precambrian and the Palaeozoic, the Indian Subcontinent, bounded to the north by the Cimmerian Superterranes, was part of Gondwana and was separated from Eurasia by the Paleo-Tethys Ocean (Fig. 1). During that period, the northern part of India was affected by a late phase of the Pan-African orogeny which is marked by an unconformity between Ordovician continental conglomerates and the underlying Cambrian marine sediments. Numerous granitic intrusions dated at around 500 Ma are also attributed to this event.

In the Early Carboniferous, an early stage of rifting developed between the Indian continent and the Cimmerian Superterranes. During the Early Permian, this rift developed into the Neotethys ocean (Fig. 2). From that time on, the Cimmerian Superterranes drifted away from Gondwana towards the north. Nowadays, Iran, Afghanistan and Tibet are partly made up of these terranes.

In the Norian (210 Ma), a major rifting episode split Gondwana in two parts. The Indian continent became part of East Gondwana, together with Australia and Antarctica. However, the separation of East and West Gondwana, together with the formation of oceanic crust, occurred later, in the Callovian (160-155 Ma). The Indian plate then broke off from Australia and Antarctica in the Early Cretaceous (130-125 Ma) with the opening of the "South Indian Ocean" (Fig. 3).

In the Upper Cretaceous (84 Ma), the Indian plate began its very rapid northward drift covering a distance of about 6000 km,[4] with the oceanic-oceanic subduction continuing until the final closure of the oceanic basin and the obduction of oceanic ophiolite onto India and the beginning of continent-continent tectonic interaction starting at about 65 Ma in the Central Himalaya.[5] The change of the relative speed between the Indian and Asian plates from very fast (18-19.5 cm/yr) to fast (4.5 cm/yr) at about 55 Ma[6] is circumstantial support for collision then. Since then there has been about 2500 km[7][8][9][10] of crustal shortening and rotating of India by 45° counterclockwise in Northwestern Himalaya[11] to 10°-15° counterclockwise in North Central Nepal[12] relative to Asia (Fig. 4).

While most of the oceanic crust was "simply" subducted below the Tibetan block during the northward motion of India, at least three major mechanisms have been put forward, either separately or jointly, to explain what happened, since collision, to the 2500 km of "missing continental crust". The first mechanism also calls upon the subduction of the Indian continental crust below Tibet. Second is the extrusion or escape tectonics mechanism (Molnar & Tapponnier 1975) which sees the Indian plate as an indenter that squeezed the Indochina block out of its way. The third proposed mechanism is that a large part (~1000 km (Dewey, Cande & Pitman 1989) or ~800 to ~1200 km[13]) of the 2500 km of crustal shortening was accommodated by thrusting and folding of the sediments of the passive Indian margin together with the deformation of the Tibetan crust.

Even though it is more than reasonable to argue that this huge amount of crustal shortening most probably results from a combination of these three mechanisms, it is nevertheless the last mechanism which created the high topographic relief of the Himalaya.

The ongoing active collision of the Indian and Eurasian continental plates challenges one hypothesis for plate motion which relies on subduction.

Major tectonic subdivisions of the Himalaya[edit]

One of the most striking aspects of the Himalayan orogen is the lateral continuity of its major tectonic elements. The Himalaya is classically divided into four tectonic units that can be followed for more than 2400 km along the belt (Fig. 5 and Fig. 7).[14]

  1. The Subhimalaya forms the foothills of the Himalayan Range and is essentially composed of Miocene to Pleistocene molassic sediments derived from the erosion of the Himalaya. These molasse deposits, known as the Muree and Siwaliks Formations, are internally folded and imbricated. The Subhimalaya is thrust along the Main Frontal Thrust over the Quaternary alluvium deposited by the rivers coming from the Himalaya (Ganges, Indus, Brahmaputra and others), which demonstrates that the Himalaya is still a very active orogen.
  2. The Lesser Himalaya (LH) is mainly formed by Upper Proterozoic to lower Cambrian detrital sediments from the passive Indian margin intercalated with some granites and acid volcanics (1840 ±70 Ma[15]). These sediments are thrust over the Subhimalaya along the Main Boundary Thrust (MBT). The Lesser Himalaya often appears in tectonic windows (Kishtwar or Larji-Kulu-Rampur windows) within the High Himalaya Crystalline Sequence.
  3. The Central Himalayan Domain, (CHD) or High Himalaya, forms the backbone of the Himalayan orogen and encompasses the areas with the highest topographic relief. It is commonly separated into four zones.
    1. The High Himalayan Crystalline Sequence, HHCS (approximately 30 different names exist in the literature to describe this unit; the most frequently found equivalents are Greater Himalayan Sequence, Tibetan Slab and High Himalayan Crystalline) is a 30-km-thick, medium- to high-grade metamorphic sequence of metasedimentary rocks which are intruded in many places by granites of Ordovician (c. 500 Ma) and early Miocene (c. 22 Ma) age. Although most of the metasediments forming the HHCS are of late Proterozoic to early Cambrian age, much younger metasediments can also be found in several areas (Mesozoic in the Tandi syncline and Warwan region, Permian in the Tschuldo slice, Ordovician to Carboniferous in the Sarchu Area). It is now generally accepted that the metasediments of the HHCS represent the metamorphic equivalents of the sedimentary series forming the base of the overlying Tethys Himalaya. The HHCS forms a major nappe which is thrust over the Lesser Himalaya along the Main Central Thrust (MCT).
    2. The Tethys Himalaya (TH) is an approximately 100-km-wide synclinorium formed by strongly folded and imbricated, weakly metamorphosed sedimentary series. Several nappes, termed North Himalayan Nappes[16] have also been described within this unit. An almost complete stratigraphic record ranging from the Upper Proterozoic to the Eocene is preserved within the sediments of the TH. Stratigraphic analysis of these sediments yields important indications on the geological history of the northern continental margin of the Indian continent from its Gondwanian evolution to its continental collision with Eurasia. The transition between the generally low-grade sediments of the Tethys Himalaya and the underlying low- to high-grade rocks of the High Himalayan Crystalline Sequence is usually progressive. But in many places along the Himalayan belt, this transition zone is marked by a major structure, the Central Himalayan Detachment System (also known as South Tibetan Detachment System or North Himalayan Normal Fault) which has indicators of both extension and compression (see 'ongoing geologic studies section below).
    3. The Nyimaling-Tso Morari Metamorphic Dome, NTMD: In the Ladakh region, the Tethys Himalaya synclinorium passes gradually to the north in a large dome of greenschist to eclogitic metamorphic rocks. As with the HHCS, these metamorphic rocks represent the metamorphic equivalent of the sediments forming the base of the Tethys Himalaya. The Precambrian Phe Formation is also here intruded by several Ordovician (c. 480 Ma[17]) granites.
    4. The Lamayuru and Markha Units (LMU) are formed by flyschs and olistholiths deposited in a turbiditic environment, on the northern part of the Indian continental slope and in the adjoining Neotethys basin. The age of these sediments ranges from Late Permian to Eocene.
  4. The Indus Suture Zone (ISZ) (or Indus-Yarlung-Tsangpo Suture Zone) defines the zone of collision between the Indian Plate and the Ladakh Batholith (also Transhimalaya or Karakoram-Lhasa Block) to the north. This suture zone is formed by:

See also[edit]

Localized geology and geomorphology topics for various parts of the Himalaya are discussed on other pages:

References[edit]

Notes[edit]

Bibliography[edit]

  • Achache, José; Courtillot, Vincent; Xiu, Zhou Yao (1984). "Paleogeographic and tectonic evolution of southern Tibet since Middle Cretaceous time: New paleomagnetic data and synthesis". Journal of Geophysical Research 89 (B12): 10311–10340. Bibcode:1984JGR....8910311A. doi:10.1029/JB089iB12p10311. 
  • Besse, J.; Courtillot, V.; Pozzi, J.P.; Westphal, M.; Zhou, Y.X. (18 October 1984). "Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo Suture". Nature 311 (5987): 621–626. Bibcode:1984Natur.311..621B. doi:10.1038/311621a0. 
  • Besse, Jean; Courtillot, Vincent (10 October 1988). "Paleogeographic maps of the continents bordering the Indian Ocean since the Early Jurassic". Journal of Geophysical Research 93 (B10): 11791–11808. Bibcode:1988JGR....9311791B. doi:10.1029/JB093iB10p11791. ISSN 0148-0227. 
  • Bingham, Douglas K.; Klootwijk, Chris T. (27 March 1980). "Palaeomagnetic constraints on Greater India's underthrusting of the Tibetan Plateau". Nature 284 (5754): 336–338. Bibcode:1980Natur.284..336B. doi:10.1038/284336a0. 
  • Blanford, W.T.; Medlicott, H.B. (1879). A manual of the geology of India. Calcutta. 
  • Brookfield, M.E. (1993). "The Himalaya passive margin from Precambrian to Cretaceous times". Sedimentary Geology 84: 1–35. Bibcode:1993SedG...84....1B. doi:10.1016/0037-0738(93)90042-4. 
  • Burbank, Douglas W.; Leland, John; Fielding, Eric; Anderson, Robert S.; Brozovic, Nicholas; Reid, Mary R.; and Duncan, Christopher (8 February 1996). "Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas". Nature 379 (6565): 505–510. Bibcode:1996Natur.379..505B. doi:10.1038/379505a0. 
  • Dewey, J.F. (1988). "Extensional collapse of orogens". Tectonics 7 (6): 1123–1139. Bibcode:1988Tecto...7.1123D. doi:10.1029/TC007i006p01123. 
  • Dewey, J.F.; Cande, S.; Pitman III, W.C. (1989). "Tectonic evolution of the Indian/Eurasia Collision Zone". Eclogae geologicae Helvetiae 82 (3): 717–734. 
  • Dèzes, Pierre (1999). "Tectonic and metamorphic Evolution of the Central Himalayan Domain in Southeast Zanskar (Kashmir, India)". Mémoires de Géologie. Doctoral thesis (University of Lausanne) 32: 149. ISSN 1015-3578. 
  • Ding, Lin; Kapp, Paul; Wan, Xiaoqiao (6 May 2005). "Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet". Tectonics 24 (3): TC3001. Bibcode:2005Tecto..24.3001D. doi:10.1029/2004TC001729. 
  • Le Fort, P.; Cronin, V. S. (1 September 1988). "Tectonic Evolution of the Himalayas and Tibet". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 326 (1589): 281–299. doi:10.1098/rsta.1988.0088.  |chapter= ignored (help)
  • Frank, W.; Gansser, A.; Trommsdorff, V. (1977). "Geological observations in the Ladakh area (Himalayas); a preliminary report". Schweizerische Mineralogische und Petrographische Mitteilungen Bulletin 57 (1): 89–113. 
  • Girard, M.; Bussy, F. (1998). "Late Pan-African magmatism in Himalaya: new geochronological and geochemical data from the Ordovician Tso Morari metagranites (Ladakh, NW India)". Schweizerische Mineralogische und Petrographische Mitteilungen Bulletin 79: 399–418. 
  • Heim, A.; Gansser, A. (1939). "Central Himalaya; geological observations of the Swiss expedition 1936". Schweizer. Naturf. Ges., Denksch. 73 (1): 245. 
  • Klootwijk, C.T.; Conaghan, P.J.; Powell, C.McA. (October 1985). "The Himalayan Arc: large-scale continental subduction, oroclinal bending and back-arc spreading". Earth and Planetary Science Letters 75 (2–3): 167–183. Bibcode:1985E&PSL..75..167K. doi:10.1016/0012-821X(85)90099-8. 
  • Klootwijk, Chris T.; Gee, Jeff S.; Peirce, John W.; Smith, Guy M.; McFadden, Phil L. (May 1992). "An early India-Asia contact: Paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121". Geology (Geological Society of America) 20 (5): 395–398. Bibcode:1992Geo....20..395K. doi:10.1130/0091-7613(1992)020<0395:AEIACP>2.3.CO;2. 
  • Molnar, P.; Tapponnier, P. (1975). "Cenozoic tectonics of Asia; effects of a continental collision". Science 189 (4201): 419–426. Bibcode:1975Sci...189..419M. doi:10.1126/science.189.4201.419. PMID 17781869. 
  • Patriat, Philippe; Achache, José (18 October 1984). "India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates". Nature 311 (5987): 615–621. Bibcode:1984Natur.311..615P. doi:10.1038/311615a0. 
  • Le Pichon, Xavier; Fournier, Marc; Jolivet, Laurent (1992). "Kinematics, topography, shortening, and extrusion in the India-Eurasia collision". Tectonics 11 (6): 1085–1098. Bibcode:1992Tecto..11.1085L. doi:10.1029/92TC01566. 
  • Ricou, L.M. (1994). "Tethys reconstructed: plates, continental fragments and their Boundaries since 260 Ma from Central America to South-eastern Asia". Geodinamica Acta 7 (4): 169–218. 
  • Stampfli, G.M.; Mosar, J.; Favre, P.; Pillevuit, A.; Vannay, J.-C. (1998). "Permo-Triassic evolution of the western Tethyan realm: the Neotethys/east-Mediterranean basin connection". PeriThetys 3. 
  • Stampfli, G.M. (2000). E. Bozkurt, J.A. Winchester and J.D.A. Piper, ed. "Tectonics and magmatism in Turkey and surrounding area". Geological Society of London, Special Publication 173: 1–23.  |chapter= ignored (help)
  • Stampfli, G.M.; Mosar, J.; Favre, P.; Pillevuit, A.; Vannay, J.-C. (2001). "Permo-Mesozoic evolution of the western Tethyan realm: the Neotethys/East- Mediterranean connection". In P.A. Ziegler, W. Cavazza, A.H.F. Robertson and S. Crasquin-Soleau. PeriTethys memoir 6: Peritethyan rift/wrench basins and passive margins. IGCP 369. Mém. Museum Nat. Hist. Nat 186. pp. 51–108. 
  • Stampfli, G.M.; Borel, G.D. (28 February 2002). "A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons". Earth and Planetary Science Letters 196 (1): 17–33. Bibcode:2002E&PSL.196...17S. doi:10.1016/S0012-821X(01)00588-X. 
  • Stampfli, GM; Borel, GD (2004). "The TRANSMED Transects in Space and Time: Constraints on the Paleotectonic Evolution of the Mediterranean Domain". In Cavazza W, Roure F, Spakman W, Stampfli GM, Ziegler P. The TRANSMED Atlas: the Mediterranean Region from Crust to Mantle. Springer Verlag. ISBN 3-540-22181-6. 
  • Steck, A.; Spring, L.; Vannay, J.C.; Masson, H.; Stutz, E.; Bucher, H.; Marchant, R.; Tièche, J.C. (1993). "Geological Transect Across the Northwestern Himalaya in eastern Ladakh and Lahul (A Model for the Continental Collision of India and Asia)". Eclogae Geologicae Helvetiae 86 (1): 219–263. 
  • Steck, A.; Spring, L.; Vannay, J.C.; Masson, H.; Bucher, H.; Stutz, E.; Marchant, R.; Tieche, J.C. (1993). Treloar, P. J.; Searle, M. P., ed. "The tectonic evolution of the northwestern Himalaya in eastern Ladakh and Lahul, India, in Himalayan Tectonics". Geological Society, London, Special Publications (London: Geological Society of London) 74: 265–276. Bibcode:1993GSLSP..74..265S. doi:10.1144/GSL.SP.1993.074.01.19. ISSN 0305-8719. 
  • Yin, An (May 2006). "Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation". Earth-Science Reviews 76 (1–2): 1–131. Bibcode:2006ESRv...76....1Y. doi:10.1016/j.earscirev.2005.05.004. ISSN 0012-8252. 

External links[edit]