Gibbons–Hawking space

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In mathematical physics, a Gibbons–Hawking space, named after Gary Gibbons and Stephen Hawking, is essentially a hyperkähler manifold with an extra U(1) symmetry.[1] (In general, Gibbons–Hawking metrics are a subclass of hyperkähler metrics.[2]) Gibbons–Hawking spaces, especially ambipolar ones,[3] find an application in the study of black hole geometry.[1][4]

See also[edit]

References[edit]

  1. ^ a b Mathur, Samir D. (22 January 2009). "The fuzzball paradigm for black holes: FAQ". Ohio State University. p. 20. Retrieved 16 April 2012. 
  2. ^ Wang, Chih-Wei (2007). Five Dimensional Microstate Geometries. ProQuest. p. 67. ISBN 978-0-549-39022-0. Retrieved 16 April 2012. 
  3. ^ Bellucci, Stefano (2008). Supersymmetric Mechanics: Attractors and Black Holes in Supersymmetric Gravity. Springer. p. 5. ISBN 978-3-540-79522-3. Retrieved 16 April 2012. 
  4. ^ Bena, Iosif; Nikolay Bobev, Stefano Giusto, Clement Ruefa and Nicholas P. Warner (March 2011). "An infinite-dimensional family of black-hole microstate geometries". Journal of High Energy Physics (International School for Advanced Studies) 3 (22). doi:10.1007/JHEP03(2011)022.