Glucose 6-phosphate

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Glucose 6-phosphate
Glucose-6-Phosphate.svg Beta-D-glucose-6-phosphate-3D-balls.png
Identifiers
CAS number 56-73-5 YesY
PubChem 208
ChemSpider 17216117 YesY
MeSH Glucose-6-phosphate
ChEBI CHEBI:4170 YesY
Jmol-3D images Image 1
Properties
Molecular formula C6H13O9P
Molar mass 260.136
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 N (verify) (what is: YesY/N?)
Infobox references

Glucose 6-phosphate (also known as Robison ester) is glucose sugar phosphorylated on carbon 6. This compound is very common in cells as the vast majority of glucose entering a cell will become phosphorylated in this way.

Because of its prominent position in cellular chemistry, glucose 6-phosphate has many possible fates within the cell. It lies at the start of two major metabolic pathways, Glycolysis and Pentose phosphate pathway. In addition to these metabolic pathways, glucose 6-phosphate may also be converted to glycogen or starch for storage. This storage is in the liver and muscles in the form of glycogen for most multicellular animals, and in intracellular starch or glycogen granules for most other organisms.

Production of glucose 6-phosphate[edit]

From glucose[edit]

Within a cell, glucose 6-phosphate is produced by phosphorylation of glucose on the sixth carbon. This is catalyzed by the enzyme hexokinase in most cells, and, in higher animals, glucokinase in certain cells, most notably liver cells. One molecule of ATP is consumed in this reaction.

D-Glucose Hexokinase α-D-Glucose 6-phosphate
D-glucose wpmp.png   Alpha-D-glucose-6-phosphate wpmp.png
ATP ADP
Biochem reaction arrow reversible YYYY horiz med.png
PO3-
4
H2O
 
  Glucose 6-phosphatase

Compound C00031 at KEGG Pathway Database. Enzyme 2.7.1.1 at KEGG Pathway Database. Compound C00668 at KEGG Pathway Database. Reaction R01786 at KEGG Pathway Database.

The major reason for the immediate phosphorylation of glucose is to prevent diffusion out of the cell. The phosphorylation adds a charged phosphate group so the glucose 6-phosphate cannot easily cross the cell membrane.

From glycogen[edit]

Glucose-6-phosphate is also produced during glycogenolysis from glucose-1-phosphate, the first product of the breakdown of glycogen polymers.

Pentose phosphate pathway[edit]

When the ratio of NADP+ : NADPH increases, the body realizes it needs to produce more NADPH (a reducing agent for several reactions like fatty acid synthesis and glutathione reduction in erythrocytes). This will cause the G6P to be dehydrogenated by glucose 6-phosphate dehydrogenase. This reversible reaction is the initial step of the pentose phosphate pathway, which generates the useful cofactor NADPH as well as ribulose-5-phosphate, a carbon source for the synthesis of other molecules. Also, if the body needs nucleotide precursors of DNA for growth and synthesis, G6P will also be dehydrogenated and enter the pentose phosphate pathway.

Glycolysis[edit]

If the cell needs energy or carbon skeletons for synthesis then glucose 6-phosphate is targeted for glycolysis. Glucose 6-phosphate is first isomerized to fructose 6-phosphate by phosphoglucose isomerase.

α-D-Glucose 6-phosphate Phosphoglucose isomerase β-D-Fructose 6-phosphate
Alpha-D-glucose-6-phosphate wpmp.png   Beta-D-fructose-6-phosphate wpmp.png
Biochem reaction arrow reversible NNNN horiz med.png
 
  Phosphoglucose isomerase

Compound C00668 at KEGG Pathway Database. Enzyme 5.3.1.9 at KEGG Pathway Database. Compound C05345 at KEGG Pathway Database. Reaction R00771 at KEGG Pathway Database.

This reaction converts glucose 6-phosphate to fructose 6-phosphate in preparation for phosphorylation to Fructose-1,6-bisphosphate. The addition of the 2nd phosphoryl group to produce Fructose-1,6-bisphosphate is an irreversible step, and so is used to irreversibly target the glucose 6-phosphate breakdown to provide energy for ATP production via glycolysis.

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

[[File:
GlycolysisGluconeogenesis_WP534 go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to Entrez go to article go to article go to article go to article go to article go to WikiPathways go to article go to Entrez go to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
GlycolysisGluconeogenesis_WP534 go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to Entrez go to article go to article go to article go to article go to article go to WikiPathways go to article go to Entrez go to article
|{{{bSize}}}px]]
Glycolysis and Gluconeogenesis edit
  1. ^ The interactive pathway map can be edited at WikiPathways: "GlycolysisGluconeogenesis_WP534". 

Storage as glycogen[edit]

If blood glucose levels are high, the body needs a way to store the excess glucose. After being converted to G6P, the molecule can be turned into glucose-1-phosphate by phosphoglucomutase. Glucose-1-phosphate can then be combined withn uridine triphosphate (UTP) to form UDP-glucose, driven by the hydrolysis of UTP, releasing phosphate. Now, the activated UDP-glucose can add to a growing glycogen molecule with the help of glycogen synthase. This is a very efficient storage mechanism for glucose since it costs the body only 1 ATP to store the 1 glucose molecule and virtually no energy to remove it from storage. It is important to note that glucose-6-phosphate is an allosteric activator of glycogen synthase, which makes sense because when the level of glucose is high the body should store the excess glucose as glycogen. On the other hand, glycogen synthase is inhibited when it is phosphorylated by protein kinase during times of high stress or low levels of blood glucose, via hormone induction by glucagon or adrenaline.

When the body needs glucose for energy, glycogen phosphorylase, with the help of an orthophosphate, can cleave away a molecule from the glycogen chain. The cleaved molecule is in the form of glucose-1-phosphate, which can be converted into G6P by phosphoglucomutase. Next, the phosphoryl group on G6P can be cleaved by glucose-6-phosphatase so that a free glucose can be formed. This free glucose can pass through membranes and can enter the bloodstream to travel to other places in the body.

Dephosphorylation and release into bloodstream[edit]

Liver cells possess glucose-6-phosphatase, which removes the phosphate group from glucose-6-phosphate produced during glycogenolysis or gluconeogenesis. Free glucose is sent into the bloodstream for uptake by other cells. Muscle cells lack this enzyme, so myofibers use glucose-6-phosphate in their own metabolic pathways.

References[edit]

See also[edit]