Grasshopper

From Wikipedia, the free encyclopedia
Jump to: navigation, search
For other uses, see Grasshopper (disambiguation).
Grasshopper
Temporal range: Late Permian–Recent
Young grasshopper on grass stalk02.jpg
Immature grasshopper
Scientific classification
Kingdom: Animalia
Phylum: Arthropoda
Subphylum: Hexapoda
Class: Insecta
Order: Orthoptera
Suborder: Caelifera
Ander, 1939
Superfamilies

Grasshoppers are Orthopteran insects of the suborder Caelifera. They are sometimes referred to as short-horned grasshoppers to distinguish them from the katydids (bush crickets). Grasshopper species which change colour and behaviour at high population densities are called locusts.

Grasshoppers are plant-eaters, sometimes becoming serious pests of cereals and other crops, especially when they swarm in their millions as locusts and destroy crops over wide areas. They protect themselves from predators by camouflage; when detected, many species attempt to startle the predator with a brilliantly-coloured wing-flash while jumping with their strong hind legs and (if adult) also flying, usually for a short distance. Other species such as the rainbow grasshopper have warning coloration which deters predators.

Grasshoppers have had a long relationship with humans, featuring as food, as pests, and in art, symbolism and literature.

Characteristics[edit]

Grasshoppers have the typical insect body plan of head, thorax and abdomen. The head bears a large pair of compound eyes which give all-round vision, three simple eyes which can detect light and dark and a pair of antennae which are sensitive to touch and smell. The mouthparts are modified for chewing and there are two sensory palps in front of the jaws.[1]

The thorax and abdomen are segmented and have a rigid cuticle made up of overlapping plates composed of chitin. The three thoracic segments bear three pairs of legs and two pairs of wings. The legs are terminated by claws for gripping and the hind legs are particularly powerful. The interior of the thorax houses the muscles that control the limbs.[1]

Crickets, like this bush-cricket Tettigonia viridissima, somewhat resemble grasshoppers but have over 20 segments in their antennae and different ovipositors.

Those species that make easily heard noises usually do so by rubbing the hind femurs against the forewings or abdomen (stridulation), or by snapping the wings in flight. Tympana, if present, are on the sides of the first abdominal segment. The hind femora are typically long and strong, fitted for leaping. Generally they are winged: the hind wings are membranous while the front wings (tegmina) are thickened and not fit for flight. Females are normally larger than males, with short ovipositors. Males have a single unpaired plate at the end of the abdomen. Females have two pairs of valves (triangles) at the end of the abdomen used to dig in sand during egg laying.

Grasshoppers are easily confused with the other sub-order of Orthoptera, Ensifera (crickets), but differ in many aspects, such as the number of segments in their antennae and structure of the ovipositor, as well as the location of the tympana and modes of sound production. Ensiferans have antennae with at least 20–24 segments, and caeliferans have fewer. In evolutionary terms, the split between the Caelifera and the Ensifera is no more recent than the Permo-Triassic boundary (Zeuner 1939).[2]

Phylogeny[edit]

The phylogeny of the Caelifera based on mitochondrial RNA of 32 taxa in six out of seven superfamilies is shown as a cladogram. The Caelifera and all the superfamilies except Pamphagoidea appear to be monophyletic.[3]

Caelifera

Tridactyloidea




Tetrigoidea




Eumastacidae




Proscopiidae




Pneumoridae




Pyrgomorphidae



Acrididae + Pamphagidae








Diversity and range[edit]

Some 2,400 valid Caeliferan genera and about 11,000 valid species have been described to date.[4] Many undescribed species exist, especially in tropical wet forests. The Caelifera are predominantly tropical with fewer species in temperate zones.

Biology[edit]

Diet and digestion[edit]

Grasshopper mouth structure
Further information: digestive system of insects

Grasshoppers prefer to eat grasses, leaves and cereal crops, but many species are omnivorous.[5] Most grasshoppers are polyphagous, eating from multiple host plants.[6] The mandibles chew food very slightly and start mechanical digestion. Salivary glands in the buccal cavity chemically digest the carbohydrates in the grasses and similar foods they eat. The gizzard has tooth-like features which grind the food further. From there, food enters the stomach, wheredigestive enzymes mix with the food to break it down. Waste products consist mainly of uric acid, urea and amino acids, and are expelled as dry pellets.

The salivary glands and midgut secrete digestive enzymes. The midgut secretes protease, lipase, amylase, and invertase, among other enzymes. The particular ones secreted vary with the different diets of grasshoppers.

Nervous system[edit]

Grasshoppers have a typical insect nervous system.[7] There is a central nervous system that consists of a ventral nerve cord containing a chain of ganglia, connected together longitudinally by bilaterally-paired bundles of axons. In general there is one ganglion per segment. The ganglion at the front of the body forms the brain, with enhanced neural machinery for processing sensory information from the eyes and antennae. There is also a series of small ganglia known as the visceral nervous system; these control a functions of the gut, respiratory and hormonal systems.

Grasshoppers have an extensive set of external sense organs. On the head there are a pair of large compound eyes and three simple eyes (ocelli), a pair of antennae containing olfactory (smell) and touch receptors, and mouthparts containing gustatory (taste) receptors. At the front end of the abdomen there is a pair of tympanal organs for sound reception. There are numerous fine hairs covering the whole body that act as mechanoreceptors (touch and wind sensors), and these are most dense on the antennae, palps (part of the mouth), and cerci (near the posterior). There are special receptors (campaniform sensillae) embedded in the cuticle that sense pressure and cuticle distortion. There are internal "chordotonal" sense organs specialized to detect position and movement about the joints of the exoskeleton. The receptors convey information to the CNS through sensory neurons, and most of these have their cell bodies located in the periphery near the receptor site itself.

Spotted grasshopper, Aularches miliaris, Bantul

Circulation and respiration[edit]

Like other insects, grasshoppers have open circulatory systems with their body cavities filled with hemolymph. The dorsal vessel is the exception to the grasshopper's open circulation; it is a tube which extends from the head through the thorax to the abdomen. The part in the abdomen is the heart; the aorta extends from the heart to the head through the thorax. Haemolymph is pumped forward from the hind end and the sides of the body through a series of valved chambers, each of which contains a pair of lateral openings (ostia), and is discharged in the head. Accessory pumps carry haemolymph through the wing veins and along the legs and antennae before it flows back to the abdomen. The haemolymph circulates nutrients through the body and carries metabolic wastes to the malphighian tubes to be excreted.

Respiration is performed using tracheae, air-filled tubes, which open at the surfaces of the thorax and abdomen through pairs of spiracles. The spiracle valves only open to allow oxygen and carbon dioxide exchange. The tracheoles, found at the end of the tracheal tubes, are insinuated between cells and carry oxygen throughout the body.

Jumping[edit]

Grasshoppers jump by extending their large back legs and pushing against the substrate (the ground, a twig, a blade of grass or whatever else they are standing on); the reaction force propels them into the air. They jump for several reasons; to escape from a predator, to launch themselves for flight, or simply to move from place to place. For the escape jump in particular there is strong selective pressure to maximize take-off velocity, since this determines the range. This means that the legs must thrust against the ground with both high force and a high velocity of movement. However, a fundamental property of muscle is that it cannot contract with both high force and high velocity, which seems like a problem. Grasshoppers overcome this apparent contradiction by using a catapult mechanism to amplify the mechanical power[8] produced by their muscles.

The jump is a three-stage process.[9] First, the grasshopper fully flexes the lower part of the leg (tibia) against the upper part (femur) by activating the flexor tibiae muscle (the back legs of the immature grasshopper in the top photograph are in this preparatory position). Second, there is a period of co-contraction in which force builds up in the large, pennate extensor tibiae muscle, but the tibia is kept flexed by the simultaneous contraction of the flexor tibiae muscle. The extensor muscle is much stronger than the flexor muscle, but the latter is aided by specializations in the joint that give it a large effective mechanical advantage over the former when the tibia is fully flexed.[10] Co-contraction can last for up to half a second, and during this period the extensor muscle shortens and stores elastic strain energy by distorting stiff cuticular structures in the leg.[11] The extensor muscle contraction is quite slow (almost isometric), which allows it to develop high force (up to 14 N in the desert locust), but because it is slow only low power is needed. The third stage of the jump is the trigger relaxation of the flexor muscle, which releases the tibia from the flexed position. The subsequent rapid tibial extension is driven mainly by the relaxation of the elastic structures, rather than by further shortening of the extensor muscle. In this way the stiff cuticle acts like the elastic of a catapult, or the bow of a bow-and-arrow. Energy is put into the store at low power by slow but strong muscle contraction, and retrieved from the store at high power by rapid relaxation of the mechanical elastic structures.

Six stages (instars) of development, from newly hatched nymph to fully winged adult

Lifecycle and reproduction[edit]

Common macrotona (Macrotona australis) laying eggs

Grasshoppers lay their eggs in the ground near food plants, in pods, generally in the summer. The eggs in the pod are glued together with a froth in some species. After a few weeks of development, the eggs of most species go into diapause, and pass the winter in this state; in a few species the eggs hatch in the same summer they were laid. Diapause is broken by a sufficiently low ground temperature; development resumes as soon as the ground warms above a threshold temperature.[12] The embryos in a pod generally all hatch out within a few minutes of each other. They soon shed their membranes and their exoskeletons harden. These first instar nymphs can then jump away from predators.[12]

Romalea guttata grasshoppers: female (larger) is laying eggs, with male in attendance.

Grasshoppers have incomplete metamorphosis: they repeatedly moult (undergo ecdysis), becoming larger and more like an adult, with for instance larger wing-buds, in each instar. The number of instars varies between species. At the final moult, the wings are inflated and become fully functional. The migratory grasshopper, Melanoplus sanguinipes, spends about 25–30 days as a nymph depending on sex and temperature, and about 51 days as an adult.[12]

Males stridulate, rapidly rasping the hind femur against the forewing to create a churring sound, to attract mates. Females select suitable egg-laying sites, such as bare soil or near the roots of food plants according to species. Males often gather around an ovipositing female; in some species she is mated as soon as she takes her ovipositor out of the ground. After laying the eggs, the female covers the hole with soil and litter.[13]

Predators, parasites and pathogens[edit]

Cottontop tamarin monkey eating a grasshopper

Grasshoppers have many predators at different stages of their life-cycle. Eggs are eaten by bee-flies, ground beetles and blister beetles. Hoppers and adults are taken by predators including other insects such as ants, robber flies and sphecid wasps; spiders; many birds; and small mammals.[14]

Parasitoids include blowflies, fleshflies, and tachinid flies. External parasites include mites.[14]

Spinochordodes tellinii and Paragordius tricuspidatus are parasitic worms that infect grasshoppers and alter the behaviour of their hosts. The grasshopper is persuaded to leap into a nearby body of water where it drowns, thus enabling the parasite to continue with the next stage of its life cycle which takes place in water.[15][16] The grasshopper nematode (Mermis nigrescens) is a long slender worm that infests grasshoppers, living in the insect's hemocoel. Adult worms lay eggs on plants and the host gets infected when it eats the foliage.[17]

Grasshoppers are affected by diseases caused by bacteria, viruses, fungi and protozoa. The bacteria Serratia marcescens and Pseudomonas aeruginosa have both been implicated in causing disease in grasshoppers, as has the entomopathogenic fungus Beauveria bassiana. This widespread fungus has been used to control various pest insects around the world, but although it infects grasshoppers, basking in the sun has the result of raising the insect's temperature above a threshold tolerated by the fungus, and the infection is not lethal.[18] The fungal pathogen Entomophaga grylli is able to influence the behaviour of its grasshopper host, causing it to climb to the top of a plant and cling to the stem as it dies. This ensures wide dispersal of the fungal spores liberated from the corpse.[19]

The fungal pathogen Metarhizium acridum is found in Africa, Australia and Brazil where it has caused epizootics in grasshoppers. It is being investigated for possible use as a microbial insecticide for locust control.[18] The microsporidian fungus Nosema locustae, once thought to be a protozoan, can be lethal to grasshoppers. It has to be consumed by mouth and is the basis for a bait-based commercial microbial pesticide. Various other microsporidians and protozoans are found in the gut.[18]

A well-camouflaged Atractomorpha lata, India

Anti-predator defences[edit]

Titanacris albipes, showing the deimatically coloured wings, used to startle predators

Grasshoppers are often camouflaged to avoid detection by predators that hunt by sight. Their coloration usually resembles the background, whether green for leafy vegetation, sandy for open areas or grey for rocks. Some species can change their coloration to suit their surroundings.[20]

The painted grasshopper of Arizona, Dactylotum bicolor, has warning coloration that effectively deters predators such as the little striped whiptail lizard.

Grasshoppers often have deimatic patterns on their wings, giving a sudden flash of bright colours that may startle predators long enough to give time to escape in a combination of jump and flight.[21]

Some species are genuinely aposematic, having both bright warning coloration and sufficient toxicity to dissuade predators. Dictyophorus productus is a "heavy, bloated, sluggish insect" that makes no attempt to hide; it has a bright red abdomen. A Cercopithecus monkey that ate other grasshoppers refused to eat the species.[22] Another species, the rainbow or painted grasshopper Dactylotum bicolor, has been shown by experiment with a natural predator, the little striped whiptail lizard, to be aposematic.[23]

Relationship with humans[edit]

Balthasar van der Ast's oil painting Flowers in a Vase with Shells and Insects, c. 1630

In art[edit]

Detail of grasshopper on table in Rachel Ruysch's painting Flowers in a Vase, c. 1685. National Gallery, London

Grasshoppers are occasionally depicted in artworks, such as the Dutch Golden Age painter Balthasar van der Ast's still life oil painting, Flowers in a Vase with Shells and Insects, c. 1630, now in the National Gallery, London, though the insect may be a bush-cricket.[24]

Another orthopteran is found in Rachel Ruysch's still life Flowers in a Vase, c. 1685. The seemingly static scene is animated by a "grasshopper on the table that looks about ready to spring", according to the gallery curator Betsy Wieseman, with other invertebrates including a spider, an ant, and two caterpillars.[25][26]

Symbolism[edit]

Sir Thomas Gresham's gilded grasshopper symbol, Lombard Street, London, 1563

Grasshoppers are sometimes used as symbols, as in Sir Thomas Gresham's gilded grasshopper in Lombard Street, London, dating from 1563; the building was for a while the headquarters of the Guardian Royal Exchange, but the company declined to use the symbol for fear of confusion with the locust.[a][27]

When grasshoppers appear in dreams, these have been interpreted as symbols of "Freedom, independence, spiritual enlightenment, inability to settle down or commit to decision". Locusts are taken literally to mean devastation of crops in the case of farmers; figuratively as "wicked men and women" for non-farmers; and "Extravagance, misfortune, & ephemeral happiness" by "gypsies".[28]

As food[edit]

Hot and sweet crispy grasshoppers, Yogyakarta, Indonesia

In some countries, grasshoppers are used as food. In southern Mexico, grasshoppers, known as chapulines, are eaten in a variety of dishes, such as in tortillas with chilli sauce.[29] Grasshoppers are served on skewers in some Chinese food markets, like the Donghuamen Night Market.[30] Fried grasshoppers (walang goreng) are eaten in the Gunung Kidul area of Yogjakarta, Java in Indonesia.[31] In the Middle East, grasshoppers are boiled, salted, and sundried, and eaten as snacks.[32]

Skewered locusts in Beijing, China

It is recorded in the Bible that John the Baptist ate locusts and wild honey (Greek: ἀκρίδες καὶ μέλι ἄγριον, akrides kai meli agrion) while living in the wilderness;[33] attempts have been made to explain the locusts as suitably ascetic vegetarian food such as carob beans, but the plain meaning of ἀκρίδες is the insects.[34][35]

As pests[edit]

Crop pest: grasshopper eating a maize leaf

Grasshoppers eat large quantities of foliage both as adults and during their development, and can be serious pests of arid land and prairies. Pasture, grain, forage, vegetable and other crops can be affected. Grasshoppers thrive in warm sunny conditions and often bask in the sun, so drought stimulates an increase in grasshopper populations. A single season of drought is not normally adequate to stimulate a massive population increase, but several successive dry seasons can do so, especially if the intervening winters are mild so that large numbers of nymphs survive. Although sunny weather stimulates growth, there needs to be an adequate food supply for the increasing grasshopper population. This means that although precipitation is needed to stimulate plant growth, prolonged periods of cloudy weather will slow nymphal development.[36]

Grasshoppers can best be prevented from becoming pests by manipulating their environment. Shade provided by trees will discourage them and they may be prevented from moving onto developing crops by removing coarse vegetation from fallow land and field margins and discouraging luxurious growth beside ditches and on roadside verges. With increasing numbers of grasshoppers, predator numbers may increase, but this seldom happens sufficiently rapidly to have much effect on populations. Biological control is being investigated but with little success. On a small scale, neem products can be effective as a feeding deterrent and as a disruptor of nymphal development. Insecticides can be used, but adult grasshoppers are difficult to kill, and as they move into fields from surrounding rank growth, crops may soon be repopulated.[36]

Locusts[edit]

Main article: locust
Millions of plague locusts on the move in Australia

Locusts are the swarming phase of certain species of short-horned grasshoppers in the family Acrididae. It has been shown that swarming behaviour is a response to overcrowding. Increased tactile stimulation of the hind legs causes an increase in levels of serotonin.[37] This causes the grasshopper to change colour, feed more and breed faster. The transformation of a solitary individual into a swarming one is induced by several contacts per minute over a short period.[38]

Following this transformation, under suitable conditions dense nomadic bands of flightless nymphs can occur, producing pheromones which attract them to each other. With several generations in a year, the locust population can build up from localised groups into vast accumulations of flying insects known as plagues, devouring all the vegetation they encounter. The largest recorded locust swarm was one of Rocky Mountain locusts in 1875 which was 1,800 miles (2,900 km) long and 110 miles (180 km) wide.[39]

An adult desert locust can eat about 2 g (0.1 oz) each day so the billions of insects in a large swarm can be very destructive, stripping all the foliage from plants in an affected area and also consuming stems, flowers, fruits, seeds and bark. Locust plagues can have devastating effects on human populations, causing famines and population upheavals. They are mentioned in both the Koran and the Bible and have been held responsible for cholera epidemics, resulting from the corpses of locusts drowned in the Mediterranean Sea and decomposing on beaches.[40]

In literature[edit]

Egyptian hieroglyph "snḥm"

There was an Egyptian hieroglyph for locust or grasshopper, snḥm. The pharaoh Ramses II compared the armies of the Hittites to locusts: "They covered the mountains and valleys and were like locusts in their multitude."[41]

Ancient Greek tetradrachm coin from Akragas, 410 BC, with a grasshopper on the right.

One of Aesop's fables, later retold by La Fontaine, is the tale of The Ant and the Grasshopper. The ant works hard all summer, while the grasshopper plays. In winter, the ant is ready but the grasshopper starves. Somerset Maugham's short story "The Ant and the Grasshopper" explores the fable's symbolism via complex framing.[42] The Canadian philosopher Bernard Suits retells the story with the grasshopper as "the exemplification of the life most worth living."[43] Other human weaknesses besides improvidence have become identified with the grasshopper's behaviour.[28] So an unfaithful woman (hopping from man to man) is "a grasshopper" in "Poprygunya", an 1892 short story by Anton Chekhov,[44] and in Jerry Paris's 1969 film The Grasshopper.[45]

The 1957 film Beginning of the End portrayed giant grasshoppers attacking Chicago.[46] In the 1998 film A Bug's Life, the heroes are the members of an ant colony, and the lead villain and his henchmen are grasshoppers.[47]

See also[edit]

Notes[edit]

  1. ^ The symbol is likely a wordplay on the name Gresham and "grass".

References[edit]

  1. ^ a b Petrie, Kristin (2010). Grasshoppers. ABDO. ISBN 978-1-61613-605-5. 
  2. ^ Zeuner, F. E. (1939). Fossil Orthoptera Ensifera. London: British Museum Natural History.
  3. ^ Flook, P. K.; Rowell, C. H. F. (1997). "The Phylogeny of the Caelifera (Insecta, Orthoptera) as Deduced from mtrRNA Gene Sequences". Molecular Phylogenetics and Evolution 8 (1): 89–103. 
  4. ^ Kevan 1982; Günther, 1980, 1992; Otte 1994–1995
  5. ^ O'Neill, Kevin M.; Woods, Stephen A.; Streett, Douglas A. (1997). "Grasshopper (Orthoptera: Acrididae) Foraging on Grasshopper Feces: Observational and Rubidium-Labeling Studies". Environmental Entomology 26 (6): 1224–1231. 
  6. ^ Davidowitz, Goggy. Grasshoppers. Arizona-Sonora Desert Museum
  7. ^ Burrows, M. (1996) The neurobiology of an insect brain. Oxford University Press, Oxford. ISBN 0198523440
  8. ^ Mechanical power is force x velocity
  9. ^ Burrows, M. (1995). "Motor patterns during kicking movements in the locust". Journal of Comparative Physiology A 176 (3): 289–305. doi:10.1007/BF00219055. PMID 7707268.  edit
  10. ^ Heitler, W.J. (1977). "The locust jump III. Structural specializations of the metathoracic tibiae". Journal of Experimental Biology 67: 29–36. 
  11. ^ Bennet-Clark, H. C. (1975). "The energetics of the jump of the locust Schistocerca gregaria". The Journal of experimental biology 63 (1): 53–83. PMID 1159370.  edit
  12. ^ a b c "Life Cycle". University of Wyoming. Retrieved 30 March 2015. 
  13. ^ Pfadt, Robert E.; Schell, Spencer; Schell, Scott (1994). "Field Guide to Common Western Grasshoppers". University of Wisconsin. Retrieved 30 March 2015. 
  14. ^ a b Capinera, 2008. Page 1709–1710
  15. ^ F. Thomas, A. Schmidt-Rhaesa, G. Martin, C. Manu, P. Durand & F. Renaud (May 2002). "Do hairworms (Nematomorpha) manipulate the water seeking behaviour of their terrestrial hosts?". Journal of Evolutionary Biology (Blackwell Science Ltd.) 15 (3): 356–361. doi:10.1046/j.1420-9101.2002.00410.x. 
  16. ^ Andreas Schmidt-Rhaesa, David G. Biron, Cécile Joly & Frédéric Thomas (2005). "Host–parasite relations and seasonal occurrence of Paragordius tricuspidatus and Spinochordodes tellinii (Nematomorpha) in Southern France". Zoologischer Anzeiger 244 (1): 51–57. doi:10.1016/j.jcz.2005.04.002. 
  17. ^ Capinera, John (2014). "Grasshopper nematode: Mermis nigrescens". Featured Creatures. IFAS. Retrieved 2015-03-28. 
  18. ^ a b c Capinera, John L. (2008). Encyclopedia of Entomology. Springer Science & Business Media. pp. 1229–1230. ISBN 978-1-4020-6242-1. 
  19. ^ Valovage, W. D.; Nelson, D. R. (1990). "Host Range and Recorded Distribution of Entomophaga grylli (Zygomycetes: Entomophthorales), a Fungal Pathogen of Grasshoppers (Orthoptera: Acrididae), in North Dakota". Journal of the Kansas Entomological Society 63 (3): 454–458. JSTOR 25085205. 
  20. ^ Cott, 1940. Pages 25-26
  21. ^ Cott, 1940. Page 378
  22. ^ Cott, 1940. Page 291
  23. ^ McGovern, George M.; Mitchell, Joseph C.; Knisley, C. Barry (1984). "Field Experiments on Prey Selection by the Whiptail Lizard, Cnemidophorus inornatus, in Arizona". Journal of Herpetology 18 (3): 347-349. 
  24. ^ "Flowers in a Vase with Shells and Insects". The National Gallery. Retrieved 31 March 2015. 
  25. ^ "Flowers in a Vase". The National Gallery. Retrieved 31 March 2015. 
  26. ^ "The National Gallery Podcast: Episode Nineteen". The National Gallery. May 2008. Retrieved 31 March 2015. Betsy Wieseman: Well, there are two caterpillars that I can see. I particularly like the one right in the foreground that’s just dangling from his thread and looking to land somewhere. It’s this wonderful little suggestion of movement. There’s a grasshopper on the table that looks about ready to spring to the other side and then nestled up between the rose and the peony is a wonderful spider and an ant on the petals of the rose. 
  27. ^ "The City's golden grasshopper". Times Higher Education Supplement. Retrieved 31 March 2015. 
  28. ^ a b Klein, Barrett A. (2012). "The Curious Connection Between Insects and Dreams". Insects 3: 1–17. doi:10.3390/insects3010001. 
  29. ^ Kenyon, Chelsie. "Chapulines". Retrieved 31 March 2015. 
  30. ^ Bizarre Foods with Andrew Zimmern aired on the Travel Channel 27 April 2008.
  31. ^ "Walang Goreng Khas Gunung Kidul" (in Indonesian). UMKM Jogja. Retrieved 30 March 2015. 
  32. ^ King, Bes Sie (December 23, 2009). "Snack on grasshoppers". NY Food Chain (New York: Columbia University Graduate School of Journalism). Retrieved February 24, 2015. 
  33. ^ Gospel of Mark Mark 1:6; Gospel of Matthew 3:4
  34. ^ Brock, Sebastian. "St John the Baptist’s diet - according to some early Eastern Christian sources". St John's College, Oxford. 
  35. ^ Kelhoffer, James A. (2004). "Did John The Baptist Eat Like A Former Essene? Locust-Eating In The Ancient Near East And At Qumran". Dead Sea Discoveries 11 (3): 293–314. There is no reason, however, to question the plausibility of Mark 1:6c, that John regularly ate these foods while in the wilderness. 
  36. ^ a b Capinera, 2008. Pages 1710–1712
  37. ^ James Morgan (January 29, 2009). "Locust swarms 'high' on serotonin". BBC News. Archived from the original on 10 October 2013. Retrieved 31 March 2015. 
  38. ^ Rogers, Stephen M.; Matheson, Thomas; Despland, Emma; Dodgson, Timothy; Burrows, Malcolm; Simpson, Stephen J. (2003). "Mechanosensory-induced behavioral gregarization in the desert locust Schistocerca gregaria" (PDF). Journal of Experimental Biology 206 (22): 3991–4002. doi:10.1242/jeb.00648. PMID 14555739. 
  39. ^ Yoon, Carol Kaesuk (23 April 2002). "Looking Back at the Days of the Locust". New York Times. Retrieved 31 March 2015. 
  40. ^ Capinera, John L. (2008). Encyclopedia of Entomology: Desert locust plagues. Springer Science & Business Media. pp. 1181–1183. ISBN 978-1-4020-6242-1. 
  41. ^ "Insects". Reshafim. January 2010 [2002]. Retrieved 30 March 2015. 
  42. ^ Sopher, H. (1994). "Somerset Maugham's "The Ant and the Grasshopper": The Literary Implications of Its Multilayered Structure". Studies in Short Fiction 31 (1 (Winter 1994)): 109–. Retrieved 30 March 2015. 
  43. ^ Suits, Bernard (2005) The Grasshopper: Games, Life and Utopia. Broadview Press. ISBN 1770480110
  44. ^ Loehlin, James N. (2010). The Cambridge Introduction to Chekho v. Cambridge University Press. pp. 80–83. ISBN 978-1-139-49352-9. 
  45. ^ Greenspun, Roger (28 May 1970). "Movie Review: The Grasshopper (1969)". The New York Times. Retrieved 1 April 2015. 
  46. ^ Bryan Senn (30 July 2007). A Year of Fear: A Day-by-Day Guide to 366 Horror Films. McFarland. p. 109. ISBN 978-0-7864-3196-0. 
  47. ^ Parihar, Parth (4 January 2014). "A Bug’s Life: Colonial Allegory". Princeton Buffer. Retrieved 30 March 2015. 

Sources[edit]

External links[edit]