# Great dodecahedron

Great dodecahedron
Type Kepler-Poinsot polyhedron
Stellation core dodecahedron
Elements F = 12, E = 30
V = 12 (χ = -6)
Faces by sides 12{5}
Schläfli symbol {5,5/2}
Wythoff symbol 5/2 | 2 5
Coxeter diagram
Symmetry group Ih, H3, [5,3], (*532)
References U35, C44, W21
Properties Regular nonconvex

(55)/2
(Vertex figure)

Small stellated dodecahedron
(dual polyhedron)

In geometry, the great dodecahedron is a Kepler-Poinsot polyhedron, with Schläfli symbol {5,5/2} and Coxeter-Dynkin diagram of . It is one of four nonconvex regular polyhedra. It is composed of 12 pentagonal faces (six pairs of parallel pentagons), with five pentagons meeting at each vertex, intersecting each other making a pentagrammic path.

## Images

Transparent model Spherical tiling

(With animation)

This polyhedron represents a spherical tiling with a density of 3. (One spherical pentagon face is shown above in yellow)
Net Stellation
× 20
Net for surface geometry; twenty isosceles triangular pyramids, arranged like the faces of an icosahedron

It can also be constructed as the second of three stellations of the dodecahedron, and referenced as Wenninger model [W21].

## Related polyhedra

It shares the same edge arrangement as the convex regular icosahedron.

If the great dodecahedron is considered as a properly intersected surface geometry, it has the same topology as a triakis icosahedron with concave pyramids rather than convex ones.

A truncation process applied to the great dodecahedron produces a series of nonconvex uniform polyhedra. Truncating edges down to points produces the dodecadodecahedron as a rectified great dodecahedron. The process completes as a birectification, reducing the original faces down to points, and producing the small stellated dodecahedron.

Name Small stellated dodecahedron Dodecadodecahedron Truncated
great
dodecahedron
Great
dodecahedron
Coxeter-Dynkin
diagram
Picture