Grinding (abrasive cutting)

From Wikipedia, the free encyclopedia
  (Redirected from Grinding operations)
Jump to: navigation, search
Grinding
Sketch of how abrasive particles in a grinding wheel remove material from a workpiece.

Grinding is an abrasive machining process that uses a grinding wheel as the cutting tool.

A wide variety of machines are used for grinding:

Grinding practice is a large and diverse area of manufacturing and toolmaking. It can produce very fine finishes and very accurate dimensions; yet in mass production contexts it can also rough out large volumes of metal quite rapidly. It is usually better suited to the machining of very hard materials than is "regular" machining (that is, cutting larger chips with cutting tools such as tool bits or milling cutters), and until recent decades it was the only practical way to machine such materials as hardened steels. Compared to "regular" machining, it is usually better suited to taking very shallow cuts, such as reducing a shaft’s diameter by half a thousandth of an inch or 12.7 μm.

Grinding is a subset of cutting, as grinding is a true metal-cutting process. Each grain of abrasive functions as a microscopic single-point cutting edge (although of high negative rake angle), and shears a tiny chip that is analogous to what would conventionally be called a "cut" chip (turning, milling, drilling, tapping, etc.). However, among people who work in the machining fields, the term cutting is often understood to refer to the macroscopic cutting operations, and grinding is often mentally categorized as a "separate" process. This is why the terms are usually used in contradistinction in shop-floor practice, even though, strictly speaking, grinding is a subset of cutting.

Similar abrasive cutting processes are lapping and sanding.

Processes[edit]

Selecting which of the following grinding operations to be used is determined by the size, shape, features and the desired production rate.

Surface grinding[edit]

Alt text
Surface grinder
Main article: Surface grinding

Surface grinding uses a rotating abrasive wheel to remove material, creating a flat surface. The tolerances that are normally achieved with grinding are ± 2 × 10−4 inches for a grinding a flat material, and ± 3 × 10−4 inches for a parallel surface (in metric units: 5 μm for flat material and 8 μm for parallel surface).

The surface grinder is composed of an abrasive wheel, a workholding device known as a chuck, either electromagnetic or vacuum, and a reciprocating table.

Typical workpiece materials include cast iron and steel. These two materials do not tend to clog the grinding wheel while being processed. Other materials are aluminum, stainless stel, brass and some plastics.

Cylindrical grinding[edit]

Cylindrical grinding (also called center-type grinding) is used to grind the cylindrical surfaces and shoulders of the workpiece. The workpiece is mounted on centers and rotated by a devise known as a drive dog or center driver. The abrasive wheel and the workpiece are rotated by separate motors and at different speeds. The table can be adjusted to produce tapers. The wheel head can be swiveled.

The five types of cylindrical grinding are: outside diameter (OD) grinding, inside diameter (ID) grinding, plunge grinding, creep feed grinding, and centerless grinding.[1]

A cylindrical grinder has a grinding (abrasive) wheel, two centers that hold the workpiece, and a chuck, grinding dog, or other mechanism to drive the work. Most cylindrical grinding machines include a swivel to allow for the forming of tapered pieces. The wheel and workpiece move parallel to one another in both the radial and longitudinal directions. The abrasive wheel can have many shapes. Standard disk shaped wheels can be used to create a tapered or straight workpiece geometry while formed wheels are used to create a shaped workpiece. The process using a formed wheel creates less vibration than using a regular disk shaped wheel.[2]

Tolerances for cylindrical grinding are held within five ten-thousandths of an inch (+/- 0.0005) (metric: +/- 13 um) for diameter and one ten-thousandth of an inch(+/- 0.0001) (metric: 2.5 um) for roundness. Precision work can reach tolerances as high as fifty millionths of an inch (+/- 0.00005) (metric: 1.3 um) for diameter and ten millionths (+/- 0.00001) (metric: 0.25 um) for roundness. Surface finishes can range from 2 to 125 microinches (metric: 50 nm to 3 um), with typical finishes ranging from 8-32 microinches. (metric: 0.2 um to 0.8 um)

Creep-feed grinding[edit]

Creep-feed grinding (CFG) was invented in Germany in the late 1950s by Edmund and Gerhard Lang. Unlike normal grinding, which is used primarily to finish surfaces, CFG is used for high rates of material removal, competing with milling and turning as a manufacturing process choice. Depths of cut of up to 6 mm (0.25 inches) are used along with low workpiece speed. Surfaces with a softer-grade resin bond are used to keep workpiece temperature low and an improved surface finish up to 1.6 micrometres Rmax

With CFG it takes 117 sec to remove 1 in.3 of material, whereas precision grinding would take more than 200 sec to do the same. CFG has the disadvantage of a wheel that is constantly degrading, and requires high spindle power, 51 hp (38 kW), and is limited in the length of part it can machine.[3]

To address the problem of wheel sharpness, continuous-dress creep-feed grinding (CDCF) was developed in the 1970s. It dresses the wheel constantly during machining, keeping it in a state of specified sharpness. It takes only 17 sec. to remove 1 in3 of material, a huge gain in productivity. 38 hp (28 kW) spindle power is required, and runs at low to conventional spindle speeds. The limit on part length was erased.

High-efficiency deep grinding (HEDG) uses plated superabrasive wheels, which never need dressing and last longer than other wheels. This reduces capital equipment investment costs. HEDG can be used on long part lengths, and removes material at a rate of 1 in3 in 83 sec. It requires high spindle power and high spindle speeds.[3]

Peel grinding, patented under the name of Quickpoint in 1985 by Erwin Junker Maschinenfabrik, GmbH in Nordrach, Germany, uses a tool with a with superabrasive nose and can machine cylindrical parts.[3]

VIPER (Very Impressive Performance Extreme Removal), 1999, is a process patented by Rolls-Royce and is used in aerospace manufacturing to produce turbine blades. It uses a continuously dressed aluminum oxide grinding wheel running at high speed. CNC-controlled nozzles apply refrigerated grinding fluid during the cut. VIPER is performed on equipment similar to a CNC machining center, and uses special wheels.[3]

Ultra-high speed grinding (UHSG) can run at speeds higher than 40,000 fpm (200 m/s), taking 41 sec to remove 1 in.3 of material, but is still in the R&D stage. It also requires high spindle power and high spindle speeds.[3]

Others[edit]

Alt text
Centerless grinding

Form grinding is a specialized type of cylindrical grinding where the grinding wheel has the exact shape of the final product. The grinding wheel does not traverse the workpiece.[4]

Internal grinding is used to grind the internal diameter of the workpiece. Tapered holes can be ground with the use of internal grinders that can swivel on the horizontal.

Centerless grinding is when the workpiece is supported by a blade instead of by centers or chucks. Two wheels are used. The larger one is used to grind the surface of the workpiece and the smaller wheel is used to regulate the axial movement of the workpiece. Types of centerless grinding include through-feed grinding, in-feed/plunge grinding, and internal centerless grinding.

Pre-grinding When a new tool has been built and has been heat-treated, it is pre-ground before welding or hardfacing commences. This usually involves grinding the OD slightly higher than the finish grind OD to ensure the correct finish size.

Electrochemical grinding is a type of grinding in which a positively charged workpiece in a conductive fluid is eroded by a negatively charged grinding wheel. The pieces from the workpiece are dissolved into the conductive fluid.

A schematic of ELID grinding

Electrolytic in-process dressing (ELID) grinding is one of the most accurate grinding methods. In this ultra precision grinding technology the grinding wheel is dressed electrochemically and in-process to maintain the accuracy of the grinding. An ELID cell consists of a metal bonded grinding wheel, a cathode electrode, a pulsed DC power supply and electrolyte. The wheel is connected to the positive terminal of the DC power supply through a carbon brush whereas the electrode is connected to the negative pole of the power supply. Usually alkaline liquids are used as both electrolytes and coolant for grinding. A nozzle is used to inject the electrolyte into the gap between wheel and electrode. The gap is usually maintained to be approximately 0.1mm to 0.3 mm. During the grinding operation one side of the wheel takes part in the grinding operation whereas the other side of the wheel is being dressed by electrochemical reaction. The dissolution of the metallic bond material is caused by the dressing which in turns results continuous protrusion of new sharp grits.[5]

Grinding wheel[edit]

Main article: Grinding wheel

A grinding wheel is an expendable wheel used for various grinding and abrasive machining operations. It is generally made from a matrix of coarse abrasive particles pressed and bonded together to form a solid, circular shape, various profiles and cross sections are available depending on the intended usage for the wheel. Grinding wheels may also be made from a solid steel or aluminium disc with particles bonded to the surface.

Lubrication[edit]

The use of fluids in a grinding process is necessary to cool and lubricate the wheel and workpiece as well as remove the chips produced in the grinding process. The most common grinding fluids are water-soluble chemical fluids, water-soluble oils, synthetic oils, and petroleum-based oils. It is imperative that the fluid be applied directly to the cutting area to prevent the fluid being blown away from the piece due to rapid rotation of the wheel.

Work Material Cutting Fluid Application
Aluminum Light duty oil Flood
Brass Light duty oil Flood
Cast Iron Heavy duty emulsifiable oil, light duty chemical oil, synthetic oil Flood
Mild Steel Heavy duty water soluble oil Flood
Stainless Steel Heavy duty emulsifiable oil, heavy duty chemical oil, synthetic oil Flood
Plastics Water soluble oil, dry, heavy duty emulsifiable oil, dry, light duty chemical oil, synthetic oil Flood

The workpiece[edit]

Workholding methods[edit]

The workpiece is manually clamped to a lathe dog, powered by the faceplate, that holds the piece in between two centers and rotates the piece. The piece and the grinding wheel rotate in opposite directions and small bits of the piece are removed as it passes along the grinding wheel. In some instances special drive centers may be used to allow the edges to be ground. The workholding method affects the production time as it changes set up times.

Workpiece materials[edit]

Typical workpiece materials include aluminum, brass, plastics, cast iron, mild steel, and stainless steel. Aluminum, brass and plastics can have poor to fair machinability characteristics for cylindrical grinding. Cast Iron and mild steel have very good characteristics for cylindrical grinding. Stainless steel is very difficult to grind due to its toughness and ability to work harden, but can be worked with the right grade of grinding wheels.

Workpiece geometry[edit]

The final shape of a workpiece is the mirror image of the grinding wheel, with cylindrical wheels creating cylindrical pieces and formed wheels creating formed pieces. Typical sizes on workpieces range from .75 in. to 20 in. (metric: 18mm to 1 m) and .80 in. to 75 in. in length (metric: 2 cm to 4 m), although pieces between .25 in. and 60 in. in diameter (metric: 6 mm to 1.5 m) and .30 in. and 100 in. in length (metric: 8 mm to 2.5 m) can be ground. Resulting shapes can range from straight cylinders, straight edged conical shapes, or even crankshafts for engines that experience relatively low torque.

Effects on workpiece materials[edit]

Mechanical properties will change due to stresses put on the part during finishing. High grinding temperatures may cause a thin martensitic layer to form on the part, which will lead to reduced material strength from microcracks.

Physical property changes include the possible loss of magnetic properties on ferromagnetic materials.

Chemical property changes include an increased susceptibility to corrosion because of high surface stress.

See also[edit]

References[edit]

  1. ^ Stephenson, David. Metal Cutting Theory and Practice. 2nd. Boca Raton: CRC Press, 1997. 52-60.
  2. ^ Nadolny, Krzysztof (9 April 2012). "The method of assessment of the grinding wheel cutting ability in the plunge grinding". Central European Journal of Engineering 2 (3): 399–409. doi:10.2478/s13531-012-0005-5. 
  3. ^ a b c d e Salmon, Stuart, "What is Abrasive Machining?," Manufacturing Engineering Feb. 2010, Society of Manufacturing Engineers.
  4. ^ Adithan & Gupta 2002, p. 129.
  5. ^ [1], T. Saleh, M. Sazedur Rahman, H.S. Lim, M. Rahman, Development and performance evaluation of an ultra precision ELID grinding machine, Journal of Materials Processing Technology, Volumes 192-193, Pages 287-291.

Bibliography[edit]