Gudermannian function

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Gudermannian function with its asymptotes y = ±π/2 marked in blue

The Gudermannian function, named after Christoph Gudermann (1798–1852), relates the circular functions and hyperbolic functions without using complex numbers.

It is defined by

\begin{align}{\rm{gd}}\,x&=\int_0^x\frac{\mathrm{d}t}{\cosh t} \\[8pt]
&=\arcsin\left(\tanh x \right)

=\mathrm{arctan}\left(\sinh x \right) \\[8pt]
&=2\arctan\left[\tanh\left(\tfrac12x\right)\right]

=2\arctan(e^x)-\tfrac12\pi.
\end{align}\,\!

Some related formulas don't quite work as definitions. For example, for real x, \arccos\mathrm{sech}\,x = \vert\mathrm{gd}\,x\vert = \arcsec(\cosh x). (See inverse trigonometric functions.)

The following identities hold:

\begin{align}
\sin\mathrm{gd}\,x&=\tanh x ;\quad
\csc\mathrm{gd}\,x=\coth x ;\\
\cos\mathrm{gd}\,x&=\mathrm{sech}\, x ;\quad\,
\sec\mathrm{gd}\,x=\cosh x ;\\
\tan\mathrm{gd}\,x&=\sinh x ;\quad\,
\cot\mathrm{gd}\,x=\mathrm{csch}\, x ;\\
\tan\tfrac{1}{2}\mathrm{gd}\,x&=\tanh\tfrac{1}{2}x.
\end{align}
The inverse Gudermannian function

The inverse Gudermannian function, which is defined on the interval −π/2 < x < π/2, is given by


\begin{align}
\operatorname{gd}^{-1}\,x & = \int_0^x\frac{\mathrm{d}t}{\cos t} \\[8pt]
& = \ln\left| \frac{1 + \sin x}{\cos x} \right| = \tfrac12\ln \left| \frac{1 + \sin x}{1 - \sin x} \right| \\[8pt]
& = \ln\left| \tan x +\sec x \right| = \ln \left| \tan\left(\tfrac14\pi + \tfrac12x\right) \right| \\[8pt]
& = \mathrm{artanh}\,(\sin x) = \mathrm{arsinh}\,(\tan x).
\end{align}

(See inverse hyperbolic functions.)

The derivatives of the Gudermannian and its inverse are

\frac{\mathrm{d}}{\mathrm{d}x}\;\mathrm{gd}\,x=\mathrm{sech}\, x;
\quad \frac{\mathrm{d}}{\mathrm{d}x}\;\operatorname{gd}^{-1}\,x=\sec x.

The expression

\tfrac{1}{2}\pi - \mathrm{gd}\,x

defines the angle of parallelism function in hyperbolic geometry.

History[edit]

The function was introduced by Johann Heinrich Lambert in the 1760s at the same time as the hyperbolic functions. He called it the "transcendent angle," and it went by various names until 1862 when Arthur Cayley suggested it be given its current name as a tribute to Gudermann's work in the 1830s on the theory of special functions.[1] Gudermann had published articles in Crelle's Journal that were collected in Theorie der potenzial- oder cyklisch-hyperbolischen functionen (1833), a book which expounded sinh and cosh to a wide audience (under the guises of \mathfrak{Sin} and \mathfrak{Cos}).

The notation gd was introduced by Cayley[2] where he starts by calling gd. u the inverse of the integral of the secant function:

u = \int_0^\phi \sec t \,\mathrm{d}t = \ln\tan\left(\tfrac14\pi+\tfrac12\phi\right)

and then derives "the definition" of the transcendent:

\operatorname{gd} \,u = i^{-1}\ln\tan\left(\tfrac14\pi+\tfrac12ui\right)

observing immediately that it is a real function of u.

Applications[edit]

The Gudermannian of the meridional distance from the equator on a Mercator projection is the meridian arc length; also, the Gudermannian of the isometric latitude equals the conformal latitude.

The Gudermannian appears in a non-periodic solution of the inverted pendulum.[3]

The Gudermannian also appears in a moving mirror solution of the dynamical Casimir effect.[4]

See also[edit]

Notes[edit]

  1. ^ George F. Becker, C. E. Van Orstrand. Hyperbolic functions. Read Books, 1931. Page xlix.
  2. ^ Cayley, A. (1862). "On the transcendent gd. u". Philosophical Magazine (4th ser.) 24: 19–21. doi:10.1080/14786446208643307 (inactive November 1, 2014). 
  3. ^ John S. Robertson, "Gudermann and the Simple Pendulum", The College Mathematics Journal 28:4:271–276 (September 1997) at JSTOR
  4. ^ Good, M.R.R., "Time Dependence of Particle Creation from Accelerating Mirrors", Phys. Rev. D {\bf 88}, no. 2, 025023 (2013). [1]

References[edit]