Height of a polynomial

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In mathematics, the height and length of a polynomial P with complex coefficients are measures of its "size".

For a polynomial P given by

P = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n ,

the height H(P) is defined to be the maximum of the magnitudes of its coefficients:

H(P) = \underset{i}{\max} \,|a_i| \,

and the length L(P) is similarly defined as the sum of the magnitudes of the coefficients:

L(P) = \sum_{i=0}^n |a_i|.\,

For a complex polynomial P of degree n, the height H(P), length L(P) and Mahler measure M(P) are related by the double inequalities

\binom{n}{\lfloor n/2 \rfloor}^{-1} H(P) \le M(P) \le H(P) \sqrt{n+1} ;
L(p) \le 2^n M(p) \le 2^n L(p) ;
H(p) \le L(p) \le n H(p)

where \scriptstyle \binom{n}{\lfloor n/2 \rfloor} is the binomial coefficient.

References[edit]

External links[edit]