Henk van der Vorst

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Hendrik "Henk" Albertus van der Vorst (born on May 5, 1944) is a Dutch mathematician and Emeritus Professor of Numerical Analysis at Utrecht University. According to the Institute for Scientific Information (ISI), his paper[1] on the Bi-CGSTAB method was the most cited paper in the field of mathematics in the 1990s.[2] He is a member of the Royal Netherlands Academy of Arts and Sciences (KNAW) and the Netherlands Academy of Technology and Innovation.[3] In 2006 he was awarded a knighthood of the Order of the Netherlands Lion.[4] Henk van der Vorst is a Fellow of Society for Industrial and Applied Mathematics (SIAM).[5]

His major contributions include preconditioned iterative methods, in particular the ICCG (incomplete Cholesky conjugate gradient) method (developed together with Koos Meijerink), a version of preconditioned conjugate gradient method,[6][7] the Bi-CGSTAB[1] and (together with Kees Vuik) GMRESR[8] Krylov subspace methods and (together with Gerard Sleijpen) the Jacobi-Davidson method[9] for solving ordinary, generalized, and nonlinear eigenproblems. He has analyzed convergence behavior of the conjugate gradient[10] and Lanczos methods. He has also developed a number of preconditioners for parallel computers,[11] including truncated Neumann series preconditioner, incomplete twisted factorizations, and the incomplete factorization based on the so-called "vdv" ordering.

He is the author of the book[12] and one of the authors of the Templates projects for linear problems[13] and eigenproblems.[14]

References[edit]

  1. ^ a b H.A. van der Vorst (1992), "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems", SIAM J. Sci. Stat. Comput. 13 (2): 631–644, doi:10.1137/0913035 
  2. ^ in-cites, September 2001, 2001 
  3. ^ Members of the Netherlands Academy of Technology and Innovation 
  4. ^ Jan Brandts, Bernd Fischer, and Andy Wathen (December 2006), "Reflections on Sir Henk van der Vorst", SIAM News 39 (10) 
  5. ^ "SIAM Fellows: Class of 2009". SIAM. Retrieved 2009-12-18. 
  6. ^ J.A. Meijerink, H.A.van der Vorst (1977), "An Iterative Solution Method for Linear Systems of Which the Coefficient Matrix is a Symmetric M-Matrix", Math. Comp. (American Mathematical Society) 31 (137): 148–162, doi:10.2307/2005786, JSTOR 2005786 
  7. ^ H.A. van der Vorst (1981), "Iterative solution methods for certain sparse linear systems with a non-symmetric matrix arising from PDE-problems", J. Comput. Phys. 44: 1–19, doi:10.1016/0021-9991(81)90034-6 
  8. ^ H.A. van der Vorst, C. Vuik (1994), "GMRESR: A family of nested GMRES methods", Numer. Lin. Alg. Appl. 1 (4): 369–386, doi:10.1002/nla.1680010404 
  9. ^ G.L.G. Sleijpen and H.A. van der Vorst (1996), "A Jacobi-Davidson iteration method for linear eigenvalue problems", SIAM J. Matrix Anal. Appl. 17 (2): 401–425, doi:10.1137/S0895479894270427 
  10. ^ A. van der Sluis, H.A. van der Vorst (1986), "The rate of convergence of conjugate gradients", Numerische Mathematik 48 (5): 543–560, doi:10.1007/BF01389450 
  11. ^ H.A. van der Vorst (1989), "High performance preconditioning", SIAM J. Sci. Statist. Comput. 10 (6): 1174–1185, doi:10.1137/0910071 
  12. ^ H.A. van der Vorst (April 2003), Iterative Krylov Methods for Large Linear systems, Cambridge University Press, Cambridge, ISBN 0-521-81828-1 
  13. ^ Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, Accessed January 2008, ISBN 0-89871-328-5 
  14. ^ Templates for the Solution of Algebraic Eigenvalue Problems: a Practical Guide, Accessed January 2008, ISBN 0-89871-471-0 

External links[edit]