# Hexagonal antiprism

Uniform Hexagonal antiprism
Type Prismatic uniform polyhedron
Elements F = 14, E = 24
V = 12 (χ = 2)
Faces by sides 12{3}+2{6}
Schläfli symbol s{2,12}
sr{2,6}
Wythoff symbol | 2 2 6
Coxeter-Dynkin
Symmetry group D6d, [2+,12], (2*6), order 24
Rotation group D6, [6,2]+, (622), order 12
References U77(d)
Dual Hexagonal trapezohedron
Properties convex

Vertex figure
3.3.3.6

In geometry, the hexagonal antiprism is the 4th in an infinite set of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps.

If faces are all regular, it is a semiregular polyhedron.

## Related polyhedra

The hexagonal faces can be replaced by coplanar triangles, leading to a nonconvex polyhedron with 24 equilateral triangles.

Uniform hexagonal dihedral spherical polyhedra
Symmetry: [6,2], (*622) [6,2]+, (622) [1+,6,2], (322) [6,2+], (2*3)
{6,2} t{6,2} r{6,2} 2t{6,2}=t{2,6} 2r{6,2}={2,6} rr{6,2} tr{6,2} sr{6,2} h{6,2} s{2,6}
Uniform duals
V62 V122 V62 V4.4.6 V26 V4.4.6 V4.4.12 V3.3.3.6 V32 V3.3.3.3
Family of uniform antiprisms
2 3 4 5 6 7 8 9 10 11 12 n
s{2,4}
sr{2,2}
s{2,6}
sr{2,3}
s{2,8}
sr{2,4}
s{2,10}
sr{2,5}
s{2,12}
sr{2,6}
s{2,14}
sr{2,7}
s{2,16}
sr{2,8}
s{2,18}
sr{2,9}
s{2,20}
sr{2,10}
s{2,22}
sr{2,11}
s{2,24}
sr{2,12}
s{2,2n}
sr{2,n}

As spherical polyhedra