Hexagonal prism

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Uniform Hexagonal prism
Hexagonal prism
Type Prismatic uniform polyhedron
Elements F = 8, E = 18, V = 12 (χ = 2)
Faces by sides 6{4}+2{6}
Schläfli symbol t{2,6} or {6}x{}
Wythoff symbol 2 6 | 2
2 2 3 |
Coxeter diagrams CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 2.pngCDel node h.pngCDel 6.pngCDel node h.png
CDel node h.pngCDel 2.pngCDel node h.pngCDel 6.pngCDel node 1.png
Symmetry D6h, [6,2], (*622), order 24
Rotation group D6, [6,2]+, (622), order 12
References U76(d)
Dual Hexagonal dipyramid
Properties convex, zonohedron
Hexagonal prism
Vertex figure
4.4.6

In geometry, the hexagonal prism is a prism with hexagonal base. This polyhedron has 8 faces, 18 edges, and 12 vertices.[1]

Since it has eight faces, it is an octahedron. However, the term octahedron is primarily used to refer to the regular octahedron, which has eight triangular faces. Because of the ambiguity of the term octahedron and the dissimilarity of the various eight-sided figures, the term is rarely used without clarification.

Before sharpening, many pencils take the shape of a long hexagonal prism.[2]

As a semiregular (or uniform) polyhedron[edit]

If faces are all regular, the hexagonal prism is a semiregular polyhedron, more generally, a uniform polyhedron, and the fourth in an infinite set of prisms formed by square sides and two regular polygon caps. It can be seen as a truncated hexagonal hosohedron, represented by Schläfli symbol t{2,6}. Alternately it can be seen as the Cartesian product of a regular hexagon and a line segment, and represented by the product {6}×{}. The dual of a hexagonal prism is a hexagonal bipyramid.

The symmetry group of a right pentagonal prism is D6h of order 24. The rotation group is D6 of order 12.

Volume[edit]

As in most prisms, the volume is found by taking the area of the base, with a side length of a, and multiplying it by the height h, giving the formula:[3]

V = \frac{3 \sqrt{3}}{2}a^2 \times h

Symmetry[edit]

The topology of a uniform hexagonal prism can have geometric variations of lower symmetry, including:

Symmetry D6h, [2,6], (*622) C6v, [6], (*66) D3h, [2,3], (*322) D3d, [2+,6], (2*3)
Construction {6}×{}, CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png t{3}×{}, CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 2.pngCDel node f1.pngCDel 3.pngCDel node f1.png s2{2,6}, CDel node h.pngCDel 2.pngCDel node h.pngCDel 6.pngCDel node 1.png
Image Hexagonal Prism.svg Hexagonal frustum.png Truncated triangle prism.png Cantic snub hexagonal hosohedron.png
Distortion Hexagonal frustum2.png Truncated triangle prism2.png Isohedral hexagon prism.png
Isohedral hexagon prism2.png
Cantic snub hexagonal hosohedron2.png

As part of spatial tesselations[edit]

It exists as cells of four prismatic uniform convex honeycombs in 3 dimensions:

Hexagonal prismatic honeycomb[1]
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
Triangular-hexagonal prismatic honeycomb
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
Snub triangular-hexagonal prismatic honeycomb
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
Rhombitriangular-hexagonal prismatic honeycomb
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel infin.pngCDel node.png
Hexagonal prismatic honeycomb.png Triangular-hexagonal prismatic honeycomb.png Snub triangular-hexagonal prismatic honeycomb.png Rhombitriangular-hexagonal prismatic honeycomb.png

It also exists as cells of a number of four-dimensional uniform polychora, including:

truncated tetrahedral prism
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png
truncated octahedral prism
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png
Truncated cuboctahedral prism
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Truncated icosahedral prism
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 2.pngCDel node 1.png
Truncated icosidodecahedral prism
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Truncated tetrahedral prism.png Truncated octahedral prism.png Truncated cuboctahedral prism.png Truncated icosahedral prism.png Truncated icosidodecahedral prism.png
runcitruncated 5-cell
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
omnitruncated 5-cell
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
runcitruncated 16-cell
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
omnitruncated tesseract
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
4-simplex t013.svg 4-simplex t0123.svg 4-cube t023.svg 4-cube t0123.svg
runcitruncated 24-cell
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
omnitruncated 24-cell
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
runcitruncated 600-cell
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
omnitruncated 120-cell
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
24-cell t0123 F4.svg 24-cell t013 F4.svg 120-cell t023 H3.png 120-cell t0123 H3.png

Related polyhedra and tilings[edit]

Uniform hexagonal dihedral spherical polyhedra
Symmetry: [6,2], (*622) [6,2]+, (622) [1+,6,2], (322) [6,2+], (2*3)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel node.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png CDel node h1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node.png CDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Hexagonal dihedron.png Dodecagonal dihedron.png Hexagonal dihedron.png Spherical hexagonal prism.png Spherical hexagonal hosohedron.png Spherical truncated trigonal prism.png Spherical dodecagonal prism2.png Spherical hexagonal antiprism.png Trigonal dihedron.png Spherical trigonal antiprism.png
{6,2} t{6,2} r{6,2} 2t{6,2}=t{2,6} 2r{6,2}={2,6} rr{6,2} tr{6,2} sr{6,2} h{6,2} s{2,6}
Uniform duals
CDel node f1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 2.pngCDel node.png CDel node.pngCDel 6.pngCDel node f1.pngCDel 2.pngCDel node.png CDel node.pngCDel 6.pngCDel node f1.pngCDel 2.pngCDel node f1.png CDel node.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 2.pngCDel node f1.png CDel node fh.pngCDel 6.pngCDel node fh.pngCDel 2x.pngCDel node fh.png CDel node fh.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node.png CDel node.pngCDel 6.pngCDel node fh.pngCDel 2x.pngCDel node fh.png
Spherical hexagonal hosohedron.png Spherical dodecagonal hosohedron.png Spherical hexagonal hosohedron.png Spherical hexagonal bipyramid.png Hexagonal dihedron.png Spherical hexagonal bipyramid.png Spherical dodecagonal bipyramid.png Spherical hexagonal trapezohedron.png Spherical trigonal hosohedron.png Spherical trigonal trapezohedron.png
V62 V122 V62 V4.4.6 V26 V4.4.6 V4.4.12 V3.3.3.6 V32 V3.3.3.3

This polyhedron can be considered a member of a sequence of uniform patterns with vertex figure (4.6.2p) and Coxeter-Dynkin diagram CDel node 1.pngCDel p.pngCDel node 1.pngCDel 3.pngCDel node 1.png. For p < 6, the members of the sequence are omnitruncated polyhedra (zonohedrons), shown below as spherical tilings. For p > 6, they are tilings of the hyperbolic plane, starting with the truncated triheptagonal tiling.

Dimensional family of omnitruncated polyhedra and tilings: 4.6.2n
Symmetry
*n32
[n,3]
Spherical Euclidean Compact hyperbolic Paracompact
*232
[2,3]
D3h
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
P6m
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]
Coxeter
Schläfli
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{2,3}
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{3,3}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{4,3}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{5,3}
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{6,3}
CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{7,3}
CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{8,3}
CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{∞,3}
Omnitruncated
figure
Spherical truncated trigonal prism.png Uniform tiling 332-t012.png Uniform tiling 432-t012.png Uniform tiling 532-t012.png Uniform polyhedron-63-t012.png H2 tiling 237-7.png H2 tiling 238-7.png H2 tiling 23i-7.png
Vertex figure 4.6.4 4.6.6 4.6.8 4.6.10 4.6.12 4.6.14 4.6.16 4.6.∞
Dual figures
Coxeter CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 8.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node f1.png
Omnitruncated
duals
Hexagonale bipiramide.png Tetrakishexahedron.jpg Disdyakisdodecahedron.jpg Disdyakistriacontahedron.jpg Tiling Dual Semiregular V4-6-12 Bisected Hexagonal.svg Order-3 heptakis heptagonal tiling.png Order-3 octakis octagonal tiling.png H2checkers 23i.png
Face
configuration
V4.6.4 V4.6.6 V4.6.8 V4.6.10 V4.6.12 V4.6.14 V4.6.16 V4.6.∞

See also[edit]

Family of uniform prisms
Symmetry 3 4 5 6 7 8 9 10 11 12
[2n,2]
[n,2]
[2n,2+]
CDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 2.pngCDel node h.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 6.pngCDel node h.pngCDel 2.pngCDel node h.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 8.pngCDel node.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 8.pngCDel node h.pngCDel 2.pngCDel node h.png
CDel node 1.pngCDel 9.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 10.pngCDel node.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 10.pngCDel node h.pngCDel 2.pngCDel node h.png
CDel node 1.pngCDel 11.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 12.pngCDel node.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 12.pngCDel node h.pngCDel 2.pngCDel node h.png
Image Triangular prism.png Tetragonal prism.png
Uniform polyhedron 222-t012.png
Cube rotorotational symmetry.png
Pentagonal prism.png Hexagonal prism.png
Truncated triangle prism.png
Cantic snub hexagonal hosohedron.png
Prism 7.png Octagonal prism.png
Truncated square prism.png
Cantic snub octagonal hosohedron.png
Prism 9.png Decagonal prism.png Hendecagonal prism.png Dodecagonal prism.png
As spherical polyhedra
Image Spherical triangular prism.png Spherical square prism.png
Spherical square prism2.png
Spherical pentagonal prism.png Spherical hexagonal prism.png
Spherical hexagonal prism2.png
Spherical heptagonal prism.png Spherical octagonal prism.png
Spherical octagonal prism2.png
Spherical decagonal prism.png
Spherical decagonal prism2.png

References[edit]

  1. ^ a b Pugh, Anthony (1976), Polyhedra: A Visual Approach, University of California Press, pp. 21, 27, 62, ISBN 9780520030565 .
  2. ^ Simpson, Audrey (2011), Core Mathematics for Cambridge IGCSE, Cambridge University Press, pp. 266–267, ISBN 9780521727921 .
  3. ^ Wheater, Carolyn C. (2007), Geometry, Career Press, pp. 236–237, ISBN 9781564149367 .

External links[edit]