Truncated trihexagonal tiling

From Wikipedia, the free encyclopedia
  (Redirected from Hexakis hexagonal tiling)
Jump to: navigation, search
Truncated trihexagonal tiling
Truncated trihexagonal tiling
Type Semiregular tiling
Vertex configuration 4.6.12
Schläfli symbol tr{6,3}
Wythoff symbol 2 6 3 |
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Symmetry p6m, [6,3], (*632)
Rotation symmetry p6, [6,3]+, (632)
Bowers acronym Othat
Dual Kisrhombille tiling
Properties Vertex-transitive
Great rhombitrihexagonal tiling vertfig.png
Vertex figure: 4.6.12

In geometry, the truncated trihexagonal tiling is one of eight semiregular tilings of the Euclidean plane. There are one square, one hexagon, and one dodecagon on each vertex. It has Schläfli symbol of tr{3,6}.

Other names[edit]

  • Great rhombitrihexagonal tiling
  • Rhombitruncated trihexagonal tiling
  • Omnitruncated hexagonal tiling, omnitruncated triangular tiling
  • Conway calls it a truncated hexadeltille, constructed as a truncation operation applied to a trihexagonal tiling (hexadeltille).[1]

Dual tiling[edit]

The dual to the truncated trihexagonal tiling is a kisrhombille tiling:

P6 dual.png

Uniform colorings[edit]

There is only one uniform coloring of a truncated trihexagonal tiling, with faces colored by polygon sides. A 2-uniform coloring has two colors of hexagons. 3-uniform colorings can have 3 colors of dodecagons or 3 colors of squares.

1-uniform 2-uniform 3-uniform
Coloring Uniform polyhedron-63-t012.png Uniform polyhedron-63-t012b.png Uniform polyhedron-63-t012c.png Uniform polyhedron-63-t012d.png
Symmetry p6m, [6,3], (*632) p3m1, [3[3]], (*333)

Circle packing[edit]

The Truncated trihexagonal tiling can be used as a circle packing, placing equal diameter circles at the center of every point. Every circle is in contact with 3 other circles in the packing (kissing number). Circles can be alternatedly colored in this packing with an even number of sides of all the regular polygons of this tiling.

The gap inside each hexagon allows for one circle, and each dodecagon allows for 7 circles, creating a dense 4-uniform packing.

Truncated rhombitrihexagonal tiling circle packing.png Truncated rhombitrihexagonal tiling circle packing2.png Truncated rhombitrihexagonal tiling circle packing3.png

Kisrhombille tiling[edit]

Kisrhombille tiling
Tiling Dual Semiregular V4-6-12 Bisected Hexagonal.svg
Type Dual semiregular tiling
Coxeter diagram CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 6.pngCDel node f1.png
Faces 30-60-90 triangle
Face configuration V4.6.12
Symmetry group p6m, [6,3], (*632)
Rotation group p6, [6,3]+, (632)
Dual truncated trihexagonal tiling
Properties face-transitive

The kisrhombille tiling or 3-6 kisrhombille tiling is a tiling of the Euclidean plane. It is constructed by congruent 30-60 degree right triangles with 4, 6, and 12 triangles meeting at each vertex.

Construction from rhombille tiling[edit]

Conway calls it a kisrhombille[1] for his kis vertex bisector operation applied to the rhombille tiling. More specifically it can be called a 3-6 kisrhombille, to distinguish it from other similar hyperbolic tilings, like 3-7 kisrhombille.

The related rhombille tiling becomes the kisrhombille by subdivding the rhombic faces on it axes into four triangle faces

It can be seen as an equilateral hexagonal tiling with each hexagon divided into 12 triangles from the center point. (Alternately it can be seen as a bisected triangular tiling divided into 6 triangles, or as an infinite arrangement of lines in six parallel families.)

It is labeled V4.6.12 because each right triangle face has three types of vertices: one with 4 triangles, one with 6 triangles, and one with 12 triangles.


Practical uses[edit]

The kisrhombille tiling is a useful starting point for making paper models of deltahedra, as each of the equilateral triangles can serve as faces, the edges of which adjoin isosceles triangles that can serve as tabs for gluing the model together.[citation needed]


Symmetry[edit]

The kisrhombille tiling represents the fundamental domains of p6m, [6,3] (*632 orbifold notation) symmetry. There are a number of small index subgroups constructed from [6,3] by mirror removal and alternation. [1+,6,3] creates *333 symmetry, shown as red mirror lines. [6,3+] creates 3*3 symmetry. [6,3]+ is the rotational subgroup. The communtator subgroup is [1+,6,3+], which is 333 symmetry. A larger index 6 subgroup constructed as [6,3*], also becomes (*333), shown in blue mirror lines, and which has its own 333 rotational symmetry, index 12.

Small index subgroups [6,3] (*632)
Index 1 2 3 6
Diagram 632 symmetry lines.png 632 symmetry lines-b.png 632 symmetry lines-c.png 632 symmetry lines-lambda.png 632 symmetry lines-lambda-2.png 632 symmetry lines-a.png
Intl (orbifold)
Coxeter
p6m (*632)
[6,3] = CDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c2.png = CDel node c2.pngCDel split1-63.pngCDel branch c1-2.pngCDel label2.png
p3m1 (*333)
[1+,6,3] = CDel node h0.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c2.png = CDel branch c2.pngCDel split2.pngCDel node c2.png
p31m (3*3)
[6,3+] = CDel node c1.pngCDel 6.pngCDel node h2.pngCDel 3.pngCDel node h2.png
cmm (2*22) pmm (*2222) p3m1 (*333)
[6,3*] = CDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.png = CDel node c1.pngCDel split1.pngCDel branch c1.png
Direct subgroups
Index 2 4 6 12
Diagram 632 symmetry alternated.png 632 symmetry lines-b2.png 632 symmetry lines-delta.png 632 symmetry lines-delta-2.png 632 symmetry lines-a2.png
Intl (orbifold)
Coxeter
p6 (632)
[6,3]+ = CDel node h2.pngCDel 6.pngCDel node h2.pngCDel 3.pngCDel node h2.png = CDel node h2.pngCDel split1-63.pngCDel branch h2h2.pngCDel label2.png
p3 (333)
[1+,6,3+] = CDel node h0.pngCDel 6.pngCDel node h2.pngCDel 3.pngCDel node h2.png = CDel branch h2h2.pngCDel split2.pngCDel node h2.png
p2 (2222) p2 (2222) p3 (333)
[1+,6,3*] = CDel node h2.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.png = CDel node h2.pngCDel split1.pngCDel branch h2h2.png

Related polyhedra and tilings[edit]

There are eight uniform tilings that can be based from the regular hexagonal tiling (or the dual triangular tiling). Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms, 7 which are topologically distinct. (The truncated triangular tiling is topologically identical to the hexagonal tiling.)

Uniform hexagonal/triangular tilings
Symmetry: [6,3], (*632) [6,3]+
(632)
[1+,6,3]
(*333)
[6,3+]
(3*3)
{6,3} t{6,3} r{6,3}
r{3[3]}
t{3,6}
t{3[3]}
{3,6}
{3[3]}
rr{6,3}
s2{6,3}
tr{6,3} sr{6,3} h{6,3}
{3[3]}
h2{6,3}
r{3[3]}
s{3,6}
s{3[3]}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel branch 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel branch 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel branch.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png =
CDel branch 10ru.pngCDel split2.pngCDel node.png or CDel branch 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel branch 10ru.pngCDel split2.pngCDel node 1.png or CDel branch 01rd.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
= CDel branch hh.pngCDel split2.pngCDel node h.png
Uniform tiling 63-t0.png Uniform tiling 63-t01.png Uniform tiling 63-t1.png
Uniform tiling 333-t01.png
Uniform tiling 63-t12.png
Uniform tiling 333-t012.png
Uniform tiling 63-t2.png
Uniform tiling 333-t2.png
Uniform tiling 63-t02.png
Rhombitrihexagonal tiling snub edge coloring.png
Uniform tiling 63-t012.png Uniform tiling 63-snub.png Uniform tiling 333-t0.pngUniform tiling 333-t1.png Uniform tiling 333-t02.pngUniform tiling 333-t12.png Uniform tiling 63-h12.png
Uniform tiling 333-snub.png
Uniform duals
V63 V3.122 V(3.6)2 V63 V36 V3.4.12.4 V.4.6.12 V34.6 V36 V(3.6)2 V36
CDel node f1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 6.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 6.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 6.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png CDel node fh.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 6.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Uniform tiling 63-t2.png Tiling Dual Semiregular V3-12-12 Triakis Triangular.svg Rhombic star tiling.png Uniform tiling 63-t2.png Uniform tiling 63-t0.png Tiling Dual Semiregular V3-4-6-4 Deltoidal Trihexagonal.svg Tiling Dual Semiregular V4-6-12 Bisected Hexagonal.svg Tiling Dual Semiregular V3-3-3-3-6 Floret Pentagonal.svg Uniform tiling 63-t0.png Rhombic star tiling.png Uniform tiling 63-t0.png

This tiling can be considered a member of a sequence of uniform patterns with vertex figure (4.6.2p) and Coxeter-Dynkin diagram CDel node 1.pngCDel p.pngCDel node 1.pngCDel 3.pngCDel node 1.png. For p < 6, the members of the sequence are omnitruncated polyhedra (zonohedra), shown below as spherical tilings. For p > 6, they are tilings of the hyperbolic plane, starting with the truncated triheptagonal tiling.

Dimensional family of omnitruncated polyhedra and tilings: 4.6.2n
Symmetry
*n32
[n,3]
Spherical Euclidean Compact hyperbolic Paracompact
*232
[2,3]
D3h
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
P6m
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]
Coxeter
Schläfli
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{2,3}
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{3,3}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{4,3}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{5,3}
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{6,3}
CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{7,3}
CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{8,3}
CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.png
tr{∞,3}
Omnitruncated
figure
Spherical truncated trigonal prism.png Uniform tiling 332-t012.png Uniform tiling 432-t012.png Uniform tiling 532-t012.png Uniform polyhedron-63-t012.png H2 tiling 237-7.png H2 tiling 238-7.png H2 tiling 23i-7.png
Vertex figure 4.6.4 4.6.6 4.6.8 4.6.10 4.6.12 4.6.14 4.6.16 4.6.∞
Dual figures
Coxeter CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 8.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node f1.png
Omnitruncated
duals
Hexagonale bipiramide.png Tetrakishexahedron.jpg Disdyakisdodecahedron.jpg Disdyakistriacontahedron.jpg Tiling Dual Semiregular V4-6-12 Bisected Hexagonal.svg Order-3 heptakis heptagonal tiling.png Order-3 octakis octagonal tiling.png H2checkers 23i.png
Face
configuration
V4.6.4 V4.6.6 V4.6.8 V4.6.10 V4.6.12 V4.6.14 V4.6.16 V4.6.∞


See also[edit]

Notes[edit]

  1. ^ a b Conway, 2008, Chapter 21, Naming Archimedean and Catalan polyhedra and tilings, p288 table

References[edit]

External links[edit]