Hydrosphere

From Wikipedia, the free encyclopedia
Jump to: navigation, search
World water distribution.

The hydrosphere (from Greek ὕδωρ - hydōr, "water"[1] and σφαῖρα - sphaira, "sphere"[2]) in physical geography describes the combined mass of water found on, under, and over the surface of a planet.

Igor Shiklomanov, the man selected by the United Nations to do its world inventory of water resources, [3] estimated that there is 1386 million cubic kilometres of water on earth.[4] This includes water in liquid and frozen forms in groundwater, glaciers, oceans, lakes and streams. Saline water account for 97.5% of this amount. Fresh water accounts for only 2.5%. Of this fresh water 68.7% is in the "form of ice and permanent snow cover in the Arctic, the Antarctic, and in the mountainous regions. Next, 29.9% exists as fresh groundwaters. Only 0.26% of the total amount of fresh waters on the Earth is concentrated in lakes, reservoirs and river systems where they are most easily accessible for our economic needs and absolutely vital for water ecosystems."[4] The total mass of the Earth's hydrosphere is about 1.4 × 1018 tonnes, which is about 0.023% of the Earth's total mass. About 20 × 1012 tonnes of this is in the Earth's atmosphere (the volume of one tonne of water is approximately 1 cubic metre). Approximately 75% of the Earth's surface, an area of some 361 million square kilometers (139.5 million square miles), is covered by ocean. The average salinity of the Earth's oceans is about 35 grams of salt per kilogram of sea water (3.5%).[5]

Water cycle[edit]

Main article: Water cycle
Watercyclesummary.jpg

The hydrological cycle transfers water from one state or reservoir to another. Reservoirs include atmospheric moisture (snow, rain and clouds) oceans, rivers, lakes, groundwater, subterranean aquifers, polar icecaps and saturated soil. Solar energy, in the form of heat and light (insolation), and gravity cause the transfer from one state to another over periods from hours to thousands of years. Most evaporation comes from the oceans and is returned to the earth as snow or rain (page 27).[3] Sublimation refers to evaporation from snow and ice. Transpiration refers to the expiration of water through the minute pores or stomata of trees. Evapotranspiration is the term used by hydrologists in reference to the three processes together, transpiration, sublimation and evaporation.[3]

An award-winning book titled Water by Marq de Villiers described the hydrosphere as a closed system in which water exists. The hydrosphere is intricate, complex, interdependent, all-pervading and stable and "seems purpose-built for regulating life (de Villiers 2003:26)."[3] De Villiers claimed that, "On earth, the total amount of water has almost certainly not changed since geological times: what we had then we still have. Water can be polluted, abused, and misused but it is neither created nor destroyed, it only migrates. There is no evidence that water vapor escapes into space (page 26)."[3]

"Every year the turnover of water on Earth involves 577,000 km3 of water. This is water that evaporates from the oceanic surface (502,800 km3) and from land (74,200 km3). The same amount of water falls as atmospheric precipitation, 458,000 km3 on the ocean and 119,000 km3 on land. The difference between precipitation and evaporation from the land surface (119,000 - 74,200 = 44,800 km3/year) represents the total runoff of the Earth's rivers (42,700 km3/year) and direct groundwater runoff to the ocean (2100 km3/year). These are the principal sources of fresh water to support life necessities and man's economic activities."[4]

Water is a basic necessity of life. Since 2/3 of the Earth is covered by water, the Earth is also called the blue planet and the watery planet.[notes 1] Hydrosphere plays an important role in the existence of the atmosphere in its present form. Oceans are important in this regard. When the Earth was formed it had only a very thin atmosphere rich in hydrogen and helium similar to the present atmosphere of Mercury. Later the gases hydrogen and helium were expelled from the atmosphere. The gases and water vapor released at the time of the cooling of the Earth helped in the formation of the atmosphere into its present form. Various types of gases and water vapor released by the volcanoes also reached the atmosphere. When the Earth cooled due to continuous rains the water vapor also condensed and fell as rain. As carbon dioxide in the atmosphere started to dissolve in rain water, atmospheric temperature decreased considerably. This helped the water vapor to condense fast and fall as rain. It is this rain water that filled the depressions on the Earth's surface to result in the formations of the oceans. It is estimated that these oceans formed about 4000 million years ago. It is in the oceans that the first life forms took shape. They did not breathe oxygen. Later, when cyanobacteria evolved, the process of conversion of carbon dioxide into food and oxygen began. As a result of the Earth's atmospheric composition became distinctly different from that of the other planets. It is this atmosphere of the Earth that is the basis for the survival of life on the Earth.

Recharging reservoirs[edit]

According to Igor A. Shiklomanov, it takes 2500 years for the complete recharge and replenishment of oceanic waters, 10,000 years for permafrost and ice, 1500 years for deep groundwater and mountainous glaciers, 17 years in lakes and 16 days in rivers.[4]

Specific fresh water availability[edit]

"Specific water availability is the residual (after use) per capita quantity of fresh water."[4] Fresh water resources are unevenly distributed in terms of space and time and can go from floods to water shortages within months in the same area. In 1998 76% of the total population had a specific water availability of less than 5.0 thousand m3 per year per capita. Already by 1998, 35% of the global population suffered "very low or catastrophically low water supplies" and Shiklomanov predicted that the situation would deteriorate in the twenty-first century with "most of the Earth's population will be living under the conditions of low or catastrophically low water supply" by 2025.

See also[edit]

Notes[edit]

  1. ^ According to planetary geologist, Ronald Greeley, "Water is very common in the outer solar system."[citation needed] Europa holds more water than earth's oceans.

References[edit]

  1. ^ ὕδωρ, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus
  2. ^ σφαῖρα, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus
  3. ^ a b c d e Marq de Villiers (2003). Water: The Fate of Our Most Precious Resource (2 ed.). Toronto, Ontario: McClelland & Stewart. p. 453. ISBN 978-0-7710-2641-6. OCLC 43365804. , revised 2003|Governor General's Award (1999)
  4. ^ a b c d e World Water Resources: A New Appraisal and Assessment for the 21st Century (Report). UNESCO. 1998. http://webworld.unesco.org/water/ihp/publications/waterway/webpc/world_water_resources.html. Retrieved 13 June 2013.
  5. ^ Kennish, Michael J. (2001). Practical handbook of marine science. Marine science series (3rd ed.). CRC Press. p. 35. ISBN 0-8493-2391-6. 

External links[edit]