Hydroxyquinol

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Hydroxyquinol
Chemical structure of hydroxyquinol
Identifiers
CAS number 533-73-3 YesY=
PubChem 10787
ChemSpider 10331 YesY
KEGG C02814 YesY
ChEBI CHEBI:16971 YesY
Jmol-3D images Image 1
Properties
Molecular formula C6H6O3
Molar mass 126.11 g/mol
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 YesY (verify) (what is: YesY/N?)
Infobox references

Hydroxyquinol is a benzenetriol.

Production[edit]

Hydroxyquinol is produced by various means of degradation. Historically hydroxyquinol was produced by the action of potassium hydroxide on hydroquinone.[1] Today the chemical is more conveniently synthesized by dehydrating D-fructose with supercritical water:[2][3]

C6H12O6 → 3 H2O + C6H6O3

Natural Occurrence[edit]

Hydroxyquinol commonly occurs in nature as a biodegradation product of catechin, a natural phenol found in plants such as Bradyrhizobium japonicum.[4] Hydroxyquinol is also a metabolite in some organisms. For instance, Hydroxyquinol 1,2-dioxygenase is an enzyme that uses hydroxyquinol as a substrate with oxygen to produce 3-hydroxy-cis,cis-muconate.

References[edit]

  1. ^ Roscoe, Henry (1891). A treatise on chemistry, Volume 3, Part 3. London: Macmillan & Co. p. 199. 
  2. ^ Luijkx, Gerard; Rantwijk, Fred; Bekkum, Herman (1993). "Hydrothermal formation of 1,2,4-benzenetriol from 5-hydroxymethyl-2-furaldehyde and D-fructose". Carbohydrate Research 242 (1): 131–139. doi:10.1016/0008-6215(93)80027-C. 
  3. ^ Srokol, Zbigniew; Anne-Gaëlle, Bouche; Estrik, Anton; Strik, Rob; Maschmeyer, Thomas; Peters, Joop (2004). "Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds". Carbohydrate Research 339 (10): 1717–1726. doi:10.1016/j.carres.2004.04.018. 
  4. ^ Mahadevan, A.; Waheeta, Hopper (1997). "Degradation of catechin by Bradyrhizobium japonicum". Biodegradation 8 (3): 159–165. doi:10.1023/A:1008254812074.