Hyper-Erlang distribution

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Diagram showing queueing system equivalent of a hyper-Erlang distribution

In probability theory, a hyper-Erlang distribution is a continuous probability distribution which takes a particular Erlang distribution Ei with probability pi. A hyper-Erlang distributed random variable X has probability density function given by

 A(x) = \sum_{i=1}^n p_i E_{l_i}(x)

where each pi > 0 with the pi summing to 1 and each of the Eli being an Erlang distribution with li stages each of which has parameter λi.[1][2][3]

See also[edit]

References[edit]

  1. ^ Bocharov, P. P.; D'Apice, C.; Pechinkin, A. V. (2003). "2. Defining parameters of queueing systems". Queueing Theory. doi:10.1515/9783110936025.61. ISBN 9783110936025.  edit
  2. ^ Yuguang Fang; Chlamtac, I. (1999). "Teletraffic analysis and mobility modeling of PCS networks". IEEE Transactions on Communications 47 (7): 1062. doi:10.1109/26.774856.  edit
  3. ^ Fang, Y. (2001). "Hyper-Erlang Distribution Model and its Application in Wireless Mobile Networks". Wireless Networks (Kluwer Academic Publishers) 7 (3): 211–219. doi:10.1023/A:1016617904269.  edit