Hyperdeformation

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In nuclear physics, hyperdeformation is theoretically predicted states of an atomic nucleus with extremely elongated shape and very high angular momentum. Less elongated states, superdeformation, has been well observed, but the experimental evidence for hyperdeformation is more limited. Hyperdeformed states correspond to an axis ratio of 3:1. They would be caused by a third minimum in the Potential energy surface, the second causing superdeformation and the first minimum being normal deformation.[1][2][3] Hyperdeformation is predicted to be found in 107Cd.

References[edit]

  1. ^ Adamian, G. G.; N. V. Antonenko, 2. Gagyi-Palffy, S.P. Ivanova, R. V. Jolos, Yu. V. Palchikov, W. Scheid, T.M. Shneidman and A.S. Zubov (2007). "Nuclear Molecular Structure". Collective Motion and Phase Transitions in Nuclear Systems: Proceedings of the Predeal International Summer School in Nuclear Physics (illustrated ed.). World Scientific. p. 483. ISBN 981-270-083-8. Retrieved 2009-02-17. 
  2. ^ Schunck, N.; Dudek, J.; Herskind, B. (May 2007). "Nuclear hyperdeformation and the Jacobi shape transition". Physical Review C 75 (5): id. 054304. Bibcode:2007PhRvC..75e4304S. doi:10.1103/PhysRevC.75.054304. 
  3. ^ Abusara, H.; Afanasjev, A. V. (2009). "Hyperdeformation in the Cd isotopes: A microscopic analysis". Physical Review C (Nuclear Physics) (American Physical Society) 79 (2): eid 024317. arXiv:0902.0095. Bibcode:2009PhRvC..79b4317A. doi:10.1103/PhysRevC.79.024317.  arXiv: 0902.0095v1