Hypertopology

From Wikipedia, the free encyclopedia
  (Redirected from Hyperspace (topology))
Jump to: navigation, search

In the mathematical branch of topology, a hyperspace (or a space equipped with a hypertopology) is a topological space, which consists of the set CL(X) of all closed subsets of another topological space X, equipped with a topology so that the canonical map

i : x \mapsto \overline{\{x\}},

is a homeomorphism onto its image. As a consequence, a copy of the original space X lives inside hyperspace CL(X). [1] [2]

Early examples of hypertopology include the Hausdorff metric[3] and Vietoris topology.[4]

References[edit]

  1. ^ Lucchetti, Roberto; Angela Pasquale (1994). "A New Approach to a Hyperspace Theory". Journal of Convex Analysis 1 (2): 173–193. Retrieved 20 January 2013. 
  2. ^ Beer, G. (1994). Topologies on closed and closed convex sets. Kluwer Academic Publishers. 
  3. ^ Hausdorff, F. (1927). Mengenlehre. Berlin and Leipzig: W. de Gruyter. 
  4. ^ Vietoris, L. (1921). "Stetige Mengen". Monatsh. Fur Math. Und Phys. 31: 173–204. doi:10.1007/BF01702717. 

External links[edit]

Comparison of Hypertopologies