Hypokinesia

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Hypokinesia
Classification and external resources
MeSH D018476

Hypokinesia refers to decreased bodily movement.[1] One of the two categories of movement disorders, hypokinesia is characterized by a partial or complete loss of muscle movement due to a disruption in the basal ganglia. Patients with hypokinetic disorders like Parkinson’s Disease experience muscle rigidity and an inability to produce movement. It is also associated with mental health disorders and prolonged inactivity due to illness, amongst other diseases.

The other category of movement disorder resulting from damage to the basal ganglia, hyperkinesia, features an exaggeration of unwanted motion, like twitching or writhing in Huntington’s disease or Tourette's Syndrome.[2]

Spectrum of Disorders[edit]

Hypokinesia describes a variety of more specific disorders:

Hypokinetic Disorder Characteristics
Akinesia (α- a-, "without", κίνησις kinēsis, "motion") Inability to initiate movement due to difficulty selecting and/or activating motor programs in the central nervous system. Common in severe cases of Parkinson's disease, akinesia is a result of severely diminished dopaminergic cell activity in the direct pathway of movement.
Bradykinesia (βραδύς bradys, "slow", κίνησις kinēsis, "motion") Characterized by slowness of movement and has been linked to Parkinson's disease and other disorders of the basal ganglia. Rather than being a slowness in initiation (akinesia), bradykinesia describes a slowness in the execution of movement. It is one of the 4 key symptoms of parkinsonism, which are bradykinesia, tremor, rigidity and postural instability. Bradykinesia is also the cause of what is normally referred to as "stone face" (expressionless face) among those with Parkinson's.
Dysarthria A condition which affects the muscles necessary for speech, causing difficulty in speech production despite a continued cognitive understanding of language. Often caused by Parkinson's disease, patients experience weakness, paralysis or lack of coordination in the motor-speech system, causing respiration, phonation, prosody, and articulation to be affected. Problems ranging from tone, speed of communication, breath control, volume and timing are displayed. Hypokinetic dysarthria particularly affects the volume of speech, prompting treatment with a speech language pathologist.[3]
Dyskinesia Characterized by a diminished ability for voluntary movements as well as the presence of involuntary movements. The hands and upper body are the areas most likely to be affected by tremors and tics. In some cases, Parkinson's patients experience dyskinesia as a negative side effect of dopamine medications.[4]
Dystonia Patients experience muscle twisting, repetition and abnormal postures. The disease could be caused by genetics or a variety of environmental factors such as reaction to drugs or birth-related trauma.[5]
Freezing Characterized by an inability to move muscles in any desired direction.
Neuroleptic malignant syndrome Results from heavy exposure to drugs that block dopamine receptors. Victims can experience fever, rigidity, mental status change, dysautonomia, tremors, dystonia and myoclonus. While this disorder is extremely rare, immediate attention is necessary because of the high risk of death.[4]
Rigidity Characterized by an increase in muscle tone causing resistance to externally imposed joint movements.[6] It does not depend on imposed speed and can be elicited at very low speeds of passive movement. It is felt in both agonist and antagonist muscles and in movements in both directions. 'Cogwheel' rigidity and 'leadpipe' rigidity are two types identified with Parkinson's disease. 'Leadpipe' rigidity results when an increase in muscle tone causes a sustained resistance to passive movement throughout the whole range of motion, with no fluctuations.'Cogwheel' rigidity is a combination of leadpipe rigidity and tremor which presents as a jerky resistance to passive movement as muscles tense and relax. Spasticity is a special form of rigidity that is present only at the start of passive movement. It is rate dependent and only elicited upon a high speed movement. These various forms of rigidity can be seen in different forms of movement disorders, such as Parkinson's disease.
Postural instability Loss of ability to maintain an upright posture.
A person with medication induced dystonia.

Pathophysiology[edit]

Associated Neurotransmitters[edit]

Dopamine

The main neurotransmitter thought to be involved in hypokinesia is dopamine.[7][8] Essential to the basal ganglionic-thalamo-cortical loop, which processes motor function, dopamine depletion is common in these areas of hypokinesic patients.[8] Bradykinesia is correlated with lateralized dopaminergic depletion in the substantia nigra.[8] The dopamine pathway in the substantia nigra is essential to motor function, and commonly a lesion in this area correlates with displayed hypokinesia.[8][9] Tremor and rigidity, however, seem to be only partially due to dopamine deficits in the substantia nigra, suggesting that there are other processes involved in motor control.[8] Treatments for hypokinesia often either attempt to inhibit the uptake of dopamine or increase the amount of neurotransmitter present in the system.[8][9]

GABA and Glutamate

The inhibitory neurotransmitter GABA and the excitatory glutamate are found in many parts of the central nervous system, including in the motor pathways that involve hypokinesia. In one pathway, glutamate in the substantia nigra excites the release of GABA into the thalamus, which then inhibits the release of glutamate in the cortex and thereby reduces motor activity. If there is too much glutamate initially in the substantia nigra, then through interaction with GABA in the thalamus and glutamate in the cortex, movements will be reduced or will not occur at all.[10]

Another direct pathway from the basal ganglia sends GABA inhibitory messages to the globus pallidus and substantia nigra, which then send GABA to the thalamus. In the indirect pathway the basal ganglia sends GABA to the globus pallidus which then sends it to the subthalamic nucleus, which then disinhibited sends glutamate to the output structures of the basal ganglia. Inhibition of GABA release could disrupt the feedback loop to the basal ganglia and produce hypokinesic movements.[11]

GABA and glutamate often interact with each other and with dopamine directly. In the basal ganglia, there is a nigrostriatal pathway where GABA and dopamine are housed in the same neurons and released together.[12]

Neurobiology[edit]

Hypokinetic symptoms arise from damage to the basal ganglia, which plays a role in producing force and computing the effort necessary to make a movement.[13] There are two possible neural pathways enabling the basal ganglia to produce movement. When activated, the direct pathway sends sensory and motor information from the cortex to the first structure of the basal ganglia, the putamen. That information directly inhibits the globus pallidus internal and allows free movement. The indirect pathway, traveling through the putamen, globus pallidus external, and subthalamic nucleus, activates the globus pallidus internal threshold and inhibits the thalamus from communicating with the motor cortex, producing hypokinetic symptoms.[13]

Basal Ganglia and Related Structures

When levels of dopamine decrease, the normal wave firing pattern of basal ganglia neural oscillations changes and the tendency for oscillations increases, particularly in the beta wave of the basal ganglia.[14] Recent research indicates that when oscillations fire simultaneously, processing is disrupted at the thalamus and cortex, affecting activities such as motor planning and sequence learning as well as causing hypokinetic tremors.[13]

Treatments[edit]

Dopaminergic Drugs[edit]

Dopaminergic drugs are commonly used in the early stages of the hypokinesia to treat patients.[9] However, with increased intake they can become ineffective because of the development of noradrenergic lesions.[9] While initially the dopaminergic drugs may be effective, these noradrenergic lesions are associated with hypokinesic gait disorder development later on.[8][9]

Some Parkinson's patients are unable to move during sleep, prompting the diagnosis of "nocturnal hypokinesia." Physicians have experienced success treating this sleep disorder with slow-release or night-time dopaminergic drugs, and in some cases, continuous stimulation by the dopamine agonist rotigotine. Despite improved mobility during sleep, many Parkinson's patients report an extremely uncomfortable sleeping experience even after dopaminergic treatments.[15]

Deep Brain Stimulation[edit]

Once the reaction to dopaminergic drugs begins to fluctuate in Parkinson’s patients, Deep Brain Stimulation (DBS) of the subthalamic nucleus and medial globus pallidus is often used to treat hypokinesia.[9][16][17] DBS, like dopaminergic drugs, initially provides relief but chronic use causes worse hypokinesia and freezing of gait.[9][18] Lower frequency DBS in non-regular patterns has been shown to be more effective and less detrimental in treatment.[17][18]

Parkinson surgery

Posteroventral pallidotomy (PVP) is a specific kind of deep brain stimulation that destroys a small part of the globus pallidus by scarring the neural tissue, reducing brain activity and therefore tremors and rigidity. It is suspected that PVP recalibrates basal ganglia activity in the thalamocortical pathway. PVP in the dominant hemisphere has been reported to disrupt executive function verbal processing abilities, and bilateral PVP may disturb processes of focused attention.[13]

Many akinesia patients also form a linguistic akinesia in which their ability to produce verbal movements mirrors their physical akinesia symptoms, especially after unsuccessful PVP deep brain stimulation.[19] Patients are usually able to maintain normal levels of fluency, but often stop mid-sentence, unable to remember or produce a desired word.[19] According to a study of Parkinson's patients with articulatory hypokinesia by Caligiuri (1989), subjects with faster rates of speech experienced more problems trying to produce conversational language than those who normally spoke at slower rates.[20]

Methylphenidate[edit]

Methylphenidate, commonly used to treat ADHD, has been used in conjunction with levodopa to treat hypokinesia in the short-term.[9] The two work together to increase dopamine levels in the striatum and prefrontal cortex.[9] Methylphenidate mainly inhibits dopamine and noradrenaline reuptake by blocking presynaptic transporters and levodopa increases the amount of dopamine, generally improving hypokinesic gait.[9][21] Some patients, however, have adverse reactions of nausea and headache to the treatment and the long-term effects of the drug treatment still need to be assessed.[9]

Stem Cells[edit]

New treatments include increasing the number of dopamine cells by transplanting stem cells into the basal ganglia or stimulating endogenous stem cell production and movement to the basal ganglia.[22] The successful integration of stem cells can relieve hypokinetic symptoms and decrease the necessary dosage of dopaminergic drugs. However, a variety of complications, including possible tumor formation, inappropriate cell migration, rejection of cells by the immune system and cerebral hemorrhage are possible, causing many physicians to believe that the risks outweigh the possible benefits.[23]

NOP Receptor Antagonists[edit]

Another treatment that is still in an experimental stage is the administration of nociception FQ peptide (NOP) receptor antagonists. This treatment has been shown to reduce hypokinesia in animal studies when increasing nociception FQ in the substantia nigra and subthalamic nucleus. Low doses can be taken with dopaminergic treatment to decrease the amount of L-dopa needed, which can reduce its long-term side effects and improve motor performance.[24]

Dance Therapy[edit]

Dance therapy has also been shown to reduce hypokinesic movements and rigidity, though targeted more at the muscular aspects of the disorder than the neural activity.[25]

Associations[edit]

Cognitive Impairment[edit]

Bradykinesia has been shown to precede impairment of executive functions, working memory, and attention.[7][26] These cognitive deficiencies can be tied to non-function of the basal ganglia and pre-frontal cortex, which is also linked to the motor-dysfunction of hypokinesia.[7] Tremor and rigidity have not had observable connections to cognitive impairments, supporting the idea that they are not as involved in the dopamine pathway in the basal ganglionic-thalamo-cortical loop.[7][8] Dopaminergic treatments have shown improvement in cognitive functions associated with hypokinesia, suggesting they are also dependent on dopamine levels in the system.[26]

Motor Motivation[edit]

Often debated is whether the efficiency, vigor, and speed of movements in patients with hypokinesia are tied to motivation for rewarding and against punishing stimuli. The basal ganglia has been tied to the incentives behind movement, therefore suggesting that a cost/benefit analysis of planned movement could be affected in hypokinesia. Interestingly, rewards have not been shown to change the aspects of a hypokinesic individual’s movement.[27] In fact, the motor planning and control of a patient with hypokinesia is already as efficient as possible (as shown by slightly faster but generally the same movement after deep brain stimulation of the subthalamic nucleus).[28] This suggests that hypokinetic individuals simply have a narrower range of movement that does not increase relative to motivation.[27][29]

Other studies have come to the same conclusion about rewards and hypokinesia but have shown that aversive stimuli can, in fact, reduce hypokinesic movement. Shiner et al., in their assessment of this finding, suggest that dopamine is either less involved or has a more complex role in the response to punishment than it does to rewards, as the hypodopaminergic striatum allows more movement in response to aversive stimuli.[30]

Demographic Differentiation[edit]

Gender

More men than women typically develop hypokinesia, which is reflected in young and middle aged populations where females have displayed higher levels of nigrostriatal dopamine than males. In the elderly, however, this differentiation is not present. Typically, women exhibit more tremor in the beginning development of hypokinesia. In the disorder, men tend to display more rigidity and women more bradykinesic motor behavior, though this is not true in all cases.[31]

Age of Onset

Hypokinesia is displayed in the brain and outwardly slightly different depending on when an individual is first affected. In young-onset hypokinesia (younger than 45 years of age), there is typically slightly more cell loss in the substantia nigra and more displayed dystonia and muscle stiffness. In old-onset hypokinesia (older than 70 years of age), there is typically more of a hypokinesic gait and difficulty walking and no dystonia. Both onsets can display resting tremor, although more generally found in old-onset cases.[32]

Symptoms[edit]

Stress causes alterations of cerebral circulation, increasing blood flow in the supramarginal gyrus and angular gyrus of the parietal lobe, the frontal lobe and in the superior temporal gyrus of the left hemisphere. There is also an increase in cardiac activity and change in the tonus of the heart vessels, which is an elementary indication of stress development. In patients with normal stress, an adaptive fight-or-flight response is usually triggered by sympathetic nervous system activation. Hypokinesia patients experience these typical stress symptoms on a regular basis because of damage to the basal ganglia system. Therefore, when a hypokinesia victim is under stress, he or she does not display a typical fight-or-flight response, placing the patient under greater danger from potentially harmful stimuli.[33] Low-impact exercise, elimination of drug and alcohol use, and regular meditation can help to restore normal stress responses in hypokinesia patients.[34]

Connections to Other Medical Conditions[edit]

Though it is often most associated with Parkinson's disease, hypokinesia can be present in a wide variety of other conditions.

Condition Connection to Hypokinesia
Stroke Damage to certain areas of the brain due to lack of oxygenation has been found to cause hypokinetic symptoms. Frontal and subcortical lesions caused by stroke are more likely to cause hypokinesia than posterior lesions.[35]
Schizophrenia The lack of connections between the right supplementary motor area to the pallidum and the left primary motor cortex to the thalamus shown in patients with schizophrenia is thought to lead to hypokinesia.[36]
Hyperammonemia Chronic hyperammonemia and liver disease can alter neurotransmission of GABA and glutamate by increasing the amount of glutamate in the substantia nigra and inhibiting movement.[10]
Progressive supranuclear palsy Very similar to Parkinson’s disease, supranuclear palsy does not actually display the hypokinetic characteristic of progressive loss of movement, despite small amplitude. Diagnosis of hypokinesia can help to distinguish this disorder from Parkinson’s.[21]

See also[edit]

References[edit]

  1. ^ http://serendip.brynmawr.edu/bb/neuro/neuro03/web1/ljackson.html
  2. ^ Kolb, B. Whishaw, I. (2011) An Introduction to Brain and Behavior, 373.
  3. ^ Yorkston, Kathryn M.; Mark Hakel; David R. Beukelman; Susan Fager (June 2007). "Evidence for effectiveness of treatment of loudness, rate, or prosody in dysarthria: A systematic review.". Journal of Medical Speech-Language Pathology 15 (2): xi–xxxvi. 
  4. ^ a b Robottom, Bradley J. (1 May 2011). "Movement Disorders Emergencies Part 1". Archives of Neurology 68 (5): 567. doi:10.1001/archneurol.2011.84. 
  5. ^ Robottom, Bradley J. (9 May 2011). "Movement Disorders Emergencies Part 1<subtitle>Hypokinetic Disorders</subtitle>". Archives of Neurology 68 (5): 567. doi:10.1001/archneurol.2011.84. 
  6. ^ O'Sullivan, Susan B.; Schmitz, Thomas J. (2007). "Parkinson's Disease". Physical Rehabilitation 5. Philadelphia: F.A Davis Company. pp. 856–857. 
  7. ^ a b c d Domellöf, Magdalena Eriksson; Elgh, Eva; Forsgren, Lars (October 2011). "The relation between cognition and motor dysfunction in drug-naive newly diagnosed patients with Parkinson's disease". Movement Disorders 26 (12): 2183–2189. doi:10.1002/mds.23814. 
  8. ^ a b c d e f g h Vingerhoets, FJ; Schulzer, M; Calne, DB; Snow, BJ (Jan 1997). "Which clinical sign of Parkinson's disease best reflects the nigrostriatal lesion?". Annals of neurology 41 (1): 58–64. doi:10.1002/ana.410410111. PMID 9005866. 
  9. ^ a b c d e f g h i j k Moreau, Caroline; Delval, Arnaud; Defebvre, Luc; Dujardin, Kathy; Duhamel, Alain; Petyt, Gregory; Vuillaume, Isabelle; Corvol, Jean-Christophe; Brefel-Courbon, Christine; Ory-Magne, Fabienne; Guehl, Dominique; Eusebio, Alexandre; Fraix, Valérie; Saulnier, Pierre-Jean; Lagha-Boukbiza, Ouhaid; Durif, Frank; Faighel, Mirela; Giordana, Caroline; Drapier, Sophie; Maltête, David; Tranchant, Christine; Houeto, Jean-Luc; Debû, Bettina; Sablonniere, Bernard; Azulay, Jean-Philippe; Tison, François; Rascol, Olivier; Vidailhet, Marie; Destée, Alain; Bloem, Bastiaan R; Bordet, Régis; Devos, David (July 2012). "Methylphenidate for gait hypokinesia and freezing in patients with Parkinson's disease undergoing subthalamic stimulation: a multicentre, parallel, randomised, placebo-controlled trial". The Lancet Neurology 11 (7): 589–596. doi:10.1016/S1474-4422(12)70106-0. 
  10. ^ a b Llansola, M; Montoliu, C; Cauli, O; Hernández-Rabaza, V; Agustí, A; Cabrera-Pastor, A; Giménez-Garzó, C; González-Usano, A; Felipo, V (June 2013). "Chronic hyperammonemia, glutamatergic neurotransmission and neurological alterations.". Metabolic brain disease 28 (2): 151–4. doi:10.1007/s11011-012-9337-3. PMID 23010935. 
  11. ^ Ortez, C; Jou, C; Cortès-Saladelafont, E; Moreno, J; Pérez, A; Ormazábal, A; Pérez-Cerdá, C; Pérez, B; Artuch, R; Cusi, V; García-Cazorla, A (Dec 15, 2013). "Infantile parkinsonism and gabaergic hypotransmission in a patient with pyruvate carboxylase deficiency.". Gene 532 (2): 302–6. doi:10.1016/j.gene.2013.08.036. PMID 23973720. 
  12. ^ González-Hernández, T; Barroso-Chinea, P; Acevedo, A; Salido, E; Rodríguez, M (January 2001). "Colocalization of tyrosine hydroxylase and GAD65 mRNA in mesostriatal neurons.". The European journal of neuroscience 13 (1): 57–67. PMID 11135004. 
  13. ^ a b c d Whelan, Brooke-Mai; Murdoch, Bruce E.; Theodoros, Deborah G.; Silburn, Peter A.; Hall, Bruce (September 2005). "Borrowing from models of motor control to translate cognitive processes: Evidence for hypokinetic–hyperkinetic linguistic homologues?". Journal of Neurolinguistics 18 (5): 361–381. doi:10.1016/j.jneuroling.2004.05.002. 
  14. ^ Akbari, A.; Gharibzadeh, S. (23 September 2009). "Oscillations as the Cause of Both Hyper- and Hypokinetic Symptoms of Movement Disorders". Journal of Neuropsychiatry 21 (3): 352–352. doi:10.1176/appi.neuropsych.21.3.352. 
  15. ^ Louter, Maartje; Munneke, Marten; Bloem, Bastiaan R.; Overeem, Sebastiaan (June 2012). "Nocturnal Hypokinesia and Sleep Quality in Parkinson's Disease". Journal of the American Geriatrics Society 60 (6): 1104–1108. doi:10.1111/j.1532-5415.2012.03966.x. 
  16. ^ Blomstedt, P; Fytagoridis, A; Åström, M; Linder, J; Forsgren, L; Hariz, MI (December 2012). "Unilateral caudal zona incerta deep brain stimulation for Parkinsonian tremor.". Parkinsonism & related disorders 18 (10): 1062–6. doi:10.1016/j.parkreldis.2012.05.024. PMID 22709794. 
  17. ^ a b Brocker, DT; Swan, BD; Turner, DA; Gross, RE; Tatter, SB; Koop, MM; Bronte-Stewart, H; Grill, WM (January 2013). "Improved efficacy of temporally non-regular deep brain stimulation in Parkinson's disease.". Experimental neurology 239: 60–7. doi:10.1016/j.expneurol.2012.09.008. PMID 23022917. 
  18. ^ a b Xie, T; Kang, UJ; Warnke, P (October 2012). "Effect of stimulation frequency on immediate freezing of gait in newly activated STN DBS in Parkinson's disease.". Journal of neurology, neurosurgery, and psychiatry 83 (10): 1015–7. doi:10.1136/jnnp-2011-302091. PMID 22696586. 
  19. ^ a b Alarcón, Fernando; Giménez-Roldán, Santiago (January 2005). "Systemic diseases that cause movement disorders". Parkinsonism & Related Disorders 11 (1): 1–18. doi:10.1016/j.parkreldis.2004.10.003. 
  20. ^ CALIGIURI, M (April 1989). "The influence of speaking rate on articulatory hypokinesia in parkinsonian dysarthria*1". Brain and Language 36 (3): 493–502. doi:10.1016/0093-934X(89)90080-1. 
  21. ^ a b Ling, H.; Massey, L. A.; Lees, A. J.; Brown, P.; Day, B. L. (6 March 2012). "Hypokinesia without decrement distinguishes progressive supranuclear palsy from Parkinson's disease". Brain 135 (4): 1141–1153. doi:10.1093/brain/aws038. 
  22. ^ Kolb, B. Whishaw, I. (2011) An Introduction to Brain and Behavior, 592.
  23. ^ Master, Z.; McLeod, M.; Mendez, I. (1 March 2007). "Benefits, risks and ethical considerations in translation of stem cell research to clinical applications in Parkinson's disease". Journal of Medical Ethics 33 (3): 169–173. doi:10.1136/jme.2005.013169. 
  24. ^ Marti, M; Mela, F; Budri, M; Volta, M; Malfacini, D; Molinari, S; Zaveri, NT; Ronzoni, S; Petrillo, P; Calò, G; Morari, M (February 2013). "Acute and chronic antiparkinsonian effects of the novel nociceptin/orphanin FQ receptor antagonist NiK-21273 in comparison with SB-612111.". British journal of pharmacology 168 (4): 863–79. doi:10.1111/j.1476-5381.2012.02219.x. PMID 22994368. 
  25. ^ Heiberger, Lisa (2011). "Impact of a weekly dance class on the functional mobility and on the quality of life of individuals with parkinson’s disease". Frontiers in Aging Neuroscience 3. doi:10.3389/fnagi.2011.00014. 
  26. ^ a b Cuesta, MJ; Sánchez-Torres, AM; de Jalón, EG; Campos, MS; Ibáñez, B; Moreno-Izco, L; Peralta, V (26 Sep 2013). "Spontaneous Parkinsonism Is Associated With Cognitive Impairment in Antipsychotic-Naive Patients With First-Episode Psychosis: A 6-Month Follow-up Study.". Schizophrenia bulletin. PMID 24072809. 
  27. ^ a b Baraduc, P; Thobois, S; Gan, J; Broussolle, E; Desmurget, M (Jan 9, 2013). "A common optimization principle for motor execution in healthy subjects and parkinsonian patients.". The Journal of neuroscience : the official journal of the Society for Neuroscience 33 (2): 665–77. doi:10.1523/jneurosci.1482-12.2013. PMID 23303945. 
  28. ^ Horak, FB; Anderson, ME (August 1984). "Influence of globus pallidus on arm movements in monkeys. I. Effects of kainic acid-induced lesions.". Journal of neurophysiology 52 (2): 290–304. PMID 6481434. 
  29. ^ Desmurget, M; Turner, RS (March 2008). "Testing basal ganglia motor functions through reversible inactivations in the posterior internal globus pallidus.". Journal of neurophysiology 99 (3): 1057–76. doi:10.1152/jn.01010.2007. PMID 18077663. 
  30. ^ Shiner, T; Seymour, B; Symmonds, M; Dayan, P; Bhatia, KP; Dolan, RJ (2012). "The effect of motivation on movement: a study of bradykinesia in Parkinson's disease.". PloS one 7 (10): e47138. doi:10.1371/journal.pone.0047138. PMID 23077557. 
  31. ^ Solla, P; Cannas, A; Ibba, FC; Loi, F; Corona, M; Orofino, G; Marrosu, MG; Marrosu, F (Dec 15, 2012). "Gender differences in motor and non-motor symptoms among Sardinian patients with Parkinson's disease.". Journal of the neurological sciences 323 (1-2): 33–9. doi:10.1016/j.jns.2012.07.026. PMID 22935408. 
  32. ^ Gibb, WR; Lees, AJ (September 1988). "A comparison of clinical and pathological features of young- and old-onset Parkinson's disease.". Neurology 38 (9): 1402–6. doi:10.1212/wnl.38.9.1402. PMID 3412587. 
  33. ^ Grigor'ev, AI; Fedorov, BM (Mar–Apr 1996). "Stress under normal conditions, hypokinesia simulating weightlessness, and during flights in space.". Human physiology 22 (2): 139–47. PMID 11541518. 
  34. ^ Wolterink, G; Van Ree, JM (Mar–Apr 1988). "Stress-induced hypokinesia is facilitated by ACTH-(7-10).". Peptides 9 (2): 277–82. doi:10.1016/0196-9781(88)90260-4. PMID 2836824. 
  35. ^ Kim, EJ; Lee, B; Jo, MK; Jung, K; You, H; Lee, BH; Cho, HJ; Sung, SM; Jung, DS; Heilman, KM; Na, DL (July 2013). "Directional and spatial motor intentional disorders in patients with right versus left hemisphere strokes.". Neuropsychology 27 (4): 428–37. doi:10.1037/a0032824. PMID 23876116. 
  36. ^ Bracht, T; Schnell, S; Federspiel, A; Razavi, N; Horn, H; Strik, W; Wiest, R; Dierks, T; Müller, TJ; Walther, S (February 2013). "Altered cortico-basal ganglia motor pathways reflect reduced volitional motor activity in schizophrenia.". Schizophrenia research 143 (2-3): 269–76. doi:10.1016/j.schres.2012.12.004. PMID 23276479.