Infrared

From Wikipedia, the free encyclopedia
  (Redirected from Infrared radiation)
Jump to: navigation, search
For other uses, see Infrared (disambiguation).
A false color image of two people taken in long-wavelength infrared (body-temperature thermal) light.
This infrared space telescope image has (false color) blue, green and red corresponding to 3.4, 4.6, and 12 µm wavelengths, respectively.

Infrared (IR) is invisible radiant energy, electromagnetic radiation with longer wavelengths than those of visible light, extending from the nominal red edge of the visible spectrum at 700 nanometers (frequency 430 THz) to 1 mm (300 GHz)[1] (although people can see infrared up to at least 1050 nm in experiments[2][3][4][5]). Most of the thermal radiation emitted by objects near room temperature is infrared.

Infrared radiation was discovered in 1800 by astronomer William Herschel, who discovered a type of invisible radiation in the spectrum beyond red light, by means of its effect upon a thermometer.[citation needed] Slightly more than half of the total energy from the Sun was eventually found to arrive on Earth in the form of infrared. The balance between absorbed and emitted infrared radiation has a critical effect on Earth's climate.

Infrared energy is emitted or absorbed by molecules when they change their rotational-vibrational movements. Infrared energy elicits vibrational modes in a molecule through a change in the dipole moment, making it a useful frequency range for study of these energy states for molecules of the proper symmetry. Infrared spectroscopy examines absorption and transmission of photons in the infrared energy range.[6]

Infrared radiation is used in industrial, scientific, and medical applications. Night-vision devices using active near-infrared illumination allow people or animals to be observed without the observer being detected. Infrared astronomy uses sensor-equipped telescopes to penetrate dusty regions of space, such as molecular clouds; detect objects such as planets, and to view highly red-shifted objects from the early days of the universe.[7] Infrared thermal-imaging cameras are used to detect heat loss in insulated systems, to observe changing blood flow in the skin, and to detect overheating of electrical apparatus.

Thermal-infrared imaging is used extensively for military and civilian purposes. Military applications include target acquisition, surveillance, night vision, homing and tracking. Humans at normal body temperature radiate chiefly at wavelengths around 10 μm (micrometers). Non-military uses include thermal efficiency analysis, environmental monitoring, industrial facility inspections, remote temperature sensing, short-ranged wireless communication, spectroscopy, and weather forecasting.

Definition and relationship to the electromagnetic spectrum[edit]

Infrared radiation extends from the nominal red edge of the visible spectrum at 700 nanometers (nm) to 1 mm. This range of wavelengths corresponds to a frequency range of approximately 430 THz down to 300 GHz. Below infrared is the microwave portion of the electromagnetic spectrum.

Infrared in relation to Electromagnetic spectrum
Light comparison[8]
Name Wavelength Frequency (Hz) Photon Energy (eV)
Gamma ray less than 0.01 nm more than 30 EHz 124 keV – 300+ GeV
X-Ray 0.01 nm – 10 nm 30 EHz – 30 PHz 124 eV  – 124 keV
Ultraviolet 10 nm – 380 nm 30 PHz – 790 THz 3.3 eV – 124 eV
Visible 380 nm–700 nm 790 THz – 430 THz 1.7 eV – 3.3 eV
Infrared 700 nm – 1 mm 430 THz – 300 GHz 1.24 meV – 1.7 eV
Microwave 1 mm – 1 meter 300 GHz – 300 MHz 1.24 µeV – 1.24 meV
Radio 1 mm – 100,000 km 300 GHz3 Hz 12.4 feV – 1.24 meV

Natural infrared[edit]

Sunlight, at an effective temperature of 5,780 kelvins, is composed of nearly thermal-spectrum radiation that is slightly more than half infrared. At zenith, sunlight provides an irradiance of just over 1 kilowatt per square meter at sea level. Of this energy, 527 watts is infrared radiation, 445 watts is visible light, and 32 watts is ultraviolet radiation.[9]

On the surface of Earth, at far lower temperatures than the surface of the Sun, almost all thermal radiation consists of infrared in various wavelengths. Of these natural thermal radiation processes only lightning and natural fires are hot enough to produce much visible energy, and fires produce far more infrared than visible-light energy.

Regions within the infrared[edit]

In general, objects emit infrared radiation across a spectrum of wavelengths, but sometimes only a limited region of the spectrum is of interest because sensors usually collect radiation only within a specific bandwidth. Thermal infrared radiation also has a maximum emission wavelength, which is inversely proportional to the absolute temperature of object, in accordance with Wien's displacement law.

Therefore, the infrared band is often subdivided into smaller sections.

Commonly used sub-division scheme[edit]

A commonly used sub-division scheme is:[10]

Division Name Abbreviation Wavelength Frequency Photon Energy Characteristics
Near-infrared NIR, IR-A DIN 0.75–1.4 µm 214-400 THz 886-1653 meV Defined by the water absorption, and commonly used in fiber optic telecommunication because of low attenuation losses in the SiO2 glass (silica) medium. Image intensifiers are sensitive to this area of the spectrum. Examples include night vision devices such as night vision goggles.
Short-wavelength infrared SWIR, IR-B DIN 1.4-3 µm 100-214 THz 413-886 meV Water absorption increases significantly at 1,450 nm. The 1,530 to 1,560 nm range is the dominant spectral region for long-distance telecommunications.
Mid-wavelength infrared MWIR, IR-C DIN; MidIR.[11] Also called intermediate infrared (IIR) 3–8 µm 37-100 THz 155–413 meV In guided missile technology the 3–5 µm portion of this band is the atmospheric window in which the homing heads of passive IR 'heat seeking' missiles are designed to work, homing on to the Infrared signature of the target aircraft, typically the jet engine exhaust plume. This region is known as thermal infrared, but it detects only temperatures somewhat above body temperature.
Long-wavelength infrared LWIR, IR-C DIN 8–15 µm 20-37 THz 83–155 meV The "thermal imaging" region, in which sensors can obtain a completely passive image of objects only slightly higher in temperature than room temperature - for example, the human body - based on thermal emissions only and requiring no illumination such as the sun, moon, or infrared illuminator. This region is also called the "thermal infrared."
Far-infrared FIR 15–1,000 µm 0.3-20 THz 1.2–83 meV (see also far-infrared laser and far infrared).

NIR and SWIR is sometimes called "reflected infrared," whereas MWIR and LWIR is sometimes referred to as "thermal infrared." Due to the nature of the blackbody radiation curves, typical 'hot' objects, such as exhaust pipes, often appear brighter in the MW compared to the same object viewed in the LW.

CIE division scheme[edit]

The International Commission on Illumination (CIE) recommended the division of infrared radiation into the following three bands:[12]

  • IR-A: 700 nm – 1400 nm (0.7 µm – 1.4 µm, 215 THz – 430 THz)
  • IR-B: 1400 nm – 3000 nm (1.4 µm – 3 µm, 100 THz – 215 THz)
  • IR-C: 3000 nm – 1 mm (3 µm – 1000 µm, 300 GHz – 100 THz)

ISO 20473 scheme[edit]

ISO 20473 specifies the following scheme:[13]

Designation Abbreviation Wavelength
Near-Infrared NIR 0.78–3 µm
Mid-Infrared MIR 3–50 µm
Far-Infrared FIR 50–1000 µm

Astronomy division scheme[edit]

Astronomers typically divide the infrared spectrum as follows:[14]

Designation Abbreviation Wavelength
Near-Infrared NIR (0.7–1) to 5 µm
Mid-Infrared MIR 5 to (25–40) µm
Far-Infrared FIR (25–40) to (200–350) µm.

These divisions are not precise and can vary depending on the publication. The three regions are used for observation of different temperature ranges, and hence different environments in space.

Sensor response division scheme[edit]

Plot of atmospheric transmittance in part of the infrared region.

A third scheme divides up the band based on the response of various detectors:[15]

  • Near-infrared: from 0.7 to 1.0 µm (from the approximate end of the response of the human eye to that of silicon).
  • Short-wave infrared: 1.0 to 3 µm (from the cut-off of silicon to that of the MWIR atmospheric window). InGaAs covers to about 1.8 µm; the less sensitive lead salts cover this region.
  • Mid-wave infrared: 3 to 5 µm (defined by the atmospheric window and covered by Indium antimonide [InSb] and HgCdTe and partially by lead selenide [PbSe]).
  • Long-wave infrared: 8 to 12, or 7 to 14 µm (this is the atmospheric window covered by HgCdTe and microbolometers).
  • Very-long wave infrared (VLWIR) (12 to about 30 µm, covered by doped silicon).

Near-infrared is the region closest in wavelength to the radiation detectable by the human eye, mid- and far-infrared are progressively further from the visible spectrum. Other definitions follow different physical mechanisms (emission peaks, vs. bands, water absorption) and the newest follow technical reasons (The common silicon detectors are sensitive to about 1,050 nm, while InGaAs' sensitivity starts around 950 nm and ends between 1,700 and 2,600 nm, depending on the specific configuration). Unfortunately, international standards for these specifications are not currently available.

The onset of infrared is defined (according to different standards) at various values typically between 700 nm and 800 nm, but the boundary between visible and infrared light is not precisely defined. The human eye is markedly less sensitive to light above 700 nm wavelength, so longer wavelengths make insignificant contributions to scenes illuminated by common light sources. However, particularly intense near-IR light (e.g., from IR lasers, IR LED sources, or from bright daylight with the visible light removed by colored gels) can be detected up to approximately 780 nm, and will be perceived as red light. Sources providing wavelengths as long as 1050 nm can be seen as a dull red glow in intense sources, causing some difficulty in near-IR illumination of scenes in the dark (usually this practical problem is solved by indirect illumination). Leaves are particularly bright in the near IR, and if all visible light leaks from around an IR-filter are blocked, and the eye is given a moment to adjust to the extremely dim image coming through a visually opaque IR-passing photographic filter, it is possible to see the Wood effect that consists of IR-glowing foliage.[16]

Telecommunication bands in the infrared[edit]

In optical communications, the part of the infrared spectrum that is used is divided into seven bands based on availability of light sources transmitting/absorbing materials (fibers) and detectors:[17]

Band Descriptor Wavelength range
O band Original 1260–1360 nm
E band Extended 1360–1460 nm
S band Short wavelength 1460–1530 nm
C band Conventional 1530–1565 nm
L band Long wavelength 1565–1625 nm
U band Ultralong wavelength 1625–1675 nm

The C-band is the dominant band for long-distance telecommunication networks. The S and L bands are based on less well established technology, and are not as widely deployed.

Heat[edit]

Main article: Thermal radiation

Infrared radiation is popularly known as "heat radiation", but light and electromagnetic waves of any frequency will heat surfaces that absorb them. Infrared light from the Sun accounts for 49%[18] of the heating of Earth, with the rest being caused by visible light that is absorbed then re-radiated at longer wavelengths. Visible light or ultraviolet-emitting lasers can char paper and incandescently hot objects emit visible radiation. Objects at room temperature will emit radiation concentrated mostly in the 8 to 25 µm band, but this is not distinct from the emission of visible light by incandescent objects and ultraviolet by even hotter objects (see black body and Wien's displacement law).[19]

Heat is energy in transit that flows due to temperature difference. Unlike heat transmitted by thermal conduction or thermal convection, thermal radiation can propagate through a vacuum. Thermal radiation is characterized by a particular spectrum of many wavelengths that is associated with emission from an object, due to the vibration of its molecules at a given temperature. Thermal radiation can be emitted from objects at any wavelength, and at very high temperatures such radiations are associated with spectra far above the infrared, extending into visible, ultraviolet, and even X-ray regions (i.e., the solar corona). Thus, the popular association of infrared radiation with thermal radiation is only a coincidence based on typical (comparatively low) temperatures often found near the surface of planet Earth.

The concept of emissivity is important in understanding the infrared emissions of objects. This is a property of a surface that describes how its thermal emissions deviate from the ideal of a black body. To further explain, two objects at the same physical temperature will not show the same infrared image[clarification needed] if they have differing emissivities.[citation needed]

Applications[edit]

Night vision[edit]

Main article: Night vision
Active-infrared night vision : the camera illuminates the scene at infrared wavelengths invisible to the human eye. Despite a dark back-lit scene, active-infrared night vision delivers identifying details, as seen on the display monitor.

Infrared is used in night vision equipment when there is insufficient visible light to see.[20] Night vision devices operate through a process involving the conversion of ambient light photons into electrons that are then amplified by a chemical and electrical process and then converted back into visible light.[20] Infrared light sources can be used to augment the available ambient light for conversion by night vision devices, increasing in-the-dark visibility without actually using a visible light source.[20]

The use of infrared light and night vision devices should not be confused with thermal imaging, which creates images based on differences in surface temperature by detecting infrared radiation (heat) that emanates from objects and their surrounding environment.[21]

Thermography[edit]

Thermography helped to determine the temperature profile of the Space Shuttle thermal protection system during re-entry.
Main article: Thermography

Infrared radiation can be used to remotely determine the temperature of objects (if the emissivity is known). This is termed thermography, or in the case of very hot objects in the NIR or visible it is termed pyrometry. Thermography (thermal imaging) is mainly used in military and industrial applications but the technology is reaching the public market in the form of infrared cameras on cars due to the massively reduced production costs.

Thermographic cameras detect radiation in the infrared range of the electromagnetic spectrum (roughly 900–14,000 nanometers or 0.9–14 μm) and produce images of that radiation. Since infrared radiation is emitted by all objects based on their temperatures, according to the black body radiation law, thermography makes it possible to "see" one's environment with or without visible illumination. The amount of radiation emitted by an object increases with temperature, therefore thermography allows one to see variations in temperature (hence the name).

Hyperspectral imaging[edit]

Main article: Hyperspectral imaging
Hyperspectral thermal infrared emission measurement, an outdoor scan in winter conditions, ambient temperature −15 °C, image produced with a Specim LWIR hyperspectral imager. Relative radiance spectra from various targets in the image are shown with arrows. The infrared spectra of the different objects such as the watch clasp have clearly distinctive characteristics. The contrast level indicates the temperature of the object.[22]
Infrared light from the LED of a remote control as seen by a digital camera.

A hyperspectral image, a basis for chemical imaging, is a "picture" containing continuous spectrum through a wide spectral range. Hyperspectral imaging is gaining importance in the applied spectroscopy particularly in the fields of NIR, SWIR, MWIR, and LWIR spectral regions. Typical applications include biological, mineralogical, defence, and industrial measurements.

Thermal Infrared Hyperspectral Camera can be applied similarly to a Thermographic camera, with the fundamental difference that each pixel contains a full LWIR spectrum. Consequently, chemical identification of the object can be performed without a need for an external light source such as the Sun or the Moon. Such cameras are typically applied for geological measurements, outdoor surveillance and UAV applications.[23]

Other imaging[edit]

In infrared photography, infrared filters are used to capture the near-infrared spectrum. Digital cameras often use infrared blockers. Cheaper digital cameras and camera phones have less effective filters and can "see" intense near-infrared, appearing as a bright purple-white color. This is especially pronounced when taking pictures of subjects near IR-bright areas (such as near a lamp), where the resulting infrared interference can wash out the image. There is also a technique called 'T-ray' imaging, which is imaging using far-infrared or terahertz radiation. Lack of bright sources can make terahertz photography more challenging than most other infrared imaging techniques. Recently T-ray imaging has been of considerable interest due to a number of new developments such as terahertz time-domain spectroscopy.

Tracking[edit]

Main article: Infrared homing

Infrared tracking, also known as infrared homing, refers to a passive missile guidance system, which uses the emission from a target of electromagnetic radiation in the infrared part of the spectrum to track it. Missiles that use infrared seeking are often referred to as "heat-seekers", since infrared (IR) is just below the visible spectrum of light in frequency and is radiated strongly by hot bodies. Many objects such as people, vehicle engines, and aircraft generate and retain heat, and as such, are especially visible in the infrared wavelengths of light compared to objects in the background.[24]

Heating[edit]

Main article: Infrared heating

Infrared radiation can be used as a deliberate heating source. According to this Mayo Clinic article[citation needed] states that, "Several studies have looked at using infrared saunas in the treatment of chronic health problems, such as high blood pressure, congestive heart failure and rheumatoid arthritis, and found some evidence of benefit." For example it is used in infrared saunas to heat the occupants, and also to remove ice from the wings of aircraft (de-icing). Far infrared is also gaining popularity as a safe heat therapy method of natural healthcare and physiotherapy. Infrared can be used in cooking and heating food as it predominantly heats the opaque, absorbent objects, rather than the air around them.

Infrared heating is also becoming more popular in industrial manufacturing processes, e.g. curing of coatings, forming of plastics, annealing, plastic welding, print drying. In these applications, infrared heaters replace convection ovens and contact heating.

Infrared heaters produce heat that is a product of invisible light and they consist of three parts: infrared light bulbs, a heat exchanger and a fan that blows air onto the exchanger to disperse the heat.

Efficiency is achieved by matching the wavelength of the infrared heater to the absorption characteristics of the material.

Communications[edit]

IR data transmission is also employed in short-range communication among computer peripherals and personal digital assistants. These devices usually conform to standards published by IrDA, the Infrared Data Association. Remote controls and IrDA devices use infrared light-emitting diodes (LEDs) to emit infrared radiation that is focused by a plastic lens into a narrow beam. The beam is modulated, i.e. switched on and off, to encode the data. The receiver uses a silicon photodiode to convert the infrared radiation to an electric current. It responds only to the rapidly pulsing signal created by the transmitter, and filters out slowly changing infrared radiation from ambient light. Infrared communications are useful for indoor use in areas of high population density. IR does not penetrate walls and so does not interfere with other devices in adjoining rooms. Infrared is the most common way for remote controls to command appliances. Infrared remote control protocols like RC-5, SIRC, are used to communicate with infrared.

Free space optical communication using infrared lasers can be a relatively inexpensive way to install a communications link in an urban area operating at up to 4 gigabit/s, compared to the cost of burying fiber optic cable.

Infrared lasers are used to provide the light for optical fiber communications systems. Infrared light with a wavelength around 1,330 nm (least dispersion) or 1,550 nm (best transmission) are the best choices for standard silica fibers.

IR data transmission of encoded audio versions of printed signs is being researched as an aid for visually impaired people through the RIAS (Remote Infrared Audible Signage) project.

Spectroscopy[edit]

Infrared vibrational spectroscopy (see also near-infrared spectroscopy) is a technique that can be used to identify molecules by analysis of their constituent bonds. Each chemical bond in a molecule vibrates at a frequency characteristic of that bond. A group of atoms in a molecule (e.g., CH2) may have multiple modes of oscillation caused by the stretching and bending motions of the group as a whole. If an oscillation leads to a change in dipole in the molecule then it will absorb a photon that has the same frequency. The vibrational frequencies of most molecules correspond to the frequencies of infrared light. Typically, the technique is used to study organic compounds using light radiation from 4000–400 cm−1, the mid-infrared. A spectrum of all the frequencies of absorption in a sample is recorded. This can be used to gain information about the sample composition in terms of chemical groups present and also its purity (for example, a wet sample will show a broad O-H absorption around 3200 cm−1).

Meteorology[edit]

IR Satellite picture taken 1315 Z on 15th October 2006. A frontal system can be seen in the Gulf of Mexico with embedded Cumulonimbus cloud. Shallower Cumulus and Stratocumulus can be seen off the Eastern Seaboard.

Weather satellites equipped with scanning radiometers produce thermal or infrared images, which can then enable a trained analyst to determine cloud heights and types, to calculate land and surface water temperatures, and to locate ocean surface features. The scanning is typically in the range 10.3–12.5 µm (IR4 and IR5 channels).

High, cold ice clouds such as Cirrus or Cumulonimbus show up bright white, lower warmer clouds such as Stratus or Stratocumulus show up as grey with intermediate clouds shaded accordingly. Hot land surfaces will show up as dark-grey or black. One disadvantage of infrared imagery is that low cloud such as stratus or fog can be a similar temperature to the surrounding land or sea surface and does not show up. However, using the difference in brightness of the IR4 channel (10.3–11.5 µm) and the near-infrared channel (1.58–1.64 µm), low cloud can be distinguished, producing a fog satellite picture. The main advantage of infrared is that images can be produced at night, allowing a continuous sequence of weather to be studied.

These infrared pictures can depict ocean eddies or vortices and map currents such as the Gulf Stream, which are valuable to the shipping industry. Fishermen and farmers are interested in knowing land and water temperatures to protect their crops against frost or increase their catch from the sea. Even El Niño phenomena can be spotted. Using color-digitized techniques, the gray-shaded thermal images can be converted to color for easier identification of desired information.

The main water vapour channel at 6.40 to 7.08 µm can be imaged by some weather satellites and shows the amount of moisture in the atmosphere.

Climatology[edit]

In the field of climatology, atmospheric infrared radiation is monitored to detect trends in the energy exchange between the earth and the atmosphere. These trends provide information on long-term changes in Earth's climate. It is one of the primary parameters studied in research into global warming, together with solar radiation.

A pyrgeometer is utilized in this field of research to perform continuous outdoor measurements. This is a broadband infrared radiometer with sensitivity for infrared radiation between approximately 4.5 µm and 50 µm.

Astronomy[edit]

Beta Pictoris, the light-blue dot off-center, as seen in infrared. It combines two images, the inner disc is at 3.6 µm.

Astronomers observe objects in the infrared portion of the electromagnetic spectrum using optical components, including mirrors, lenses and solid state digital detectors. For this reason it is classified as part of optical astronomy. To form an image, the components of an infrared telescope need to be carefully shielded from heat sources, and the detectors are chilled using liquid helium.

The sensitivity of Earth-based infrared telescopes is significantly limited by water vapor in the atmosphere, which absorbs a portion of the infrared radiation arriving from space outside of selected atmospheric windows. This limitation can be partially alleviated by placing the telescope observatory at a high altitude, or by carrying the telescope aloft with a balloon or an aircraft. Space telescopes do not suffer from this handicap, and so outer space is considered the ideal location for infrared astronomy.

The infrared portion of the spectrum has several useful benefits for astronomers. Cold, dark molecular clouds of gas and dust in our galaxy will glow with radiated heat as they are irradiated by imbedded stars. Infrared can also be used to detect protostars before they begin to emit visible light. Stars emit a smaller portion of their energy in the infrared spectrum, so nearby cool objects such as planets can be more readily detected. (In the visible light spectrum, the glare from the star will drown out the reflected light from a planet.)

Infrared light is also useful for observing the cores of active galaxies, which are often cloaked in gas and dust. Distant galaxies with a high redshift will have the peak portion of their spectrum shifted toward longer wavelengths, so they are more readily observed in the infrared.[7]

Art history[edit]

Infrared reflectography-en.svg

Infrared reflectography (fr/it/es), as called by art historians,[25] are taken of paintings to reveal underlying layers, in particular the underdrawing or outline drawn by the artist as a guide. This often uses carbon black, which shows up well in reflectograms, as long as it has not also been used in the ground underlying the whole painting. Art historians are looking to see whether the visible layers of paint differ from the under-drawing or layers in between – such alterations are called pentimenti when made by the original artist. This is very useful information in deciding whether a painting is the prime version by the original artist or a copy, and whether it has been altered by over-enthusiastic restoration work. In general, the more pentimenti the more likely a painting is to be the prime version. It also gives useful insights into working practices.[26]

Among many other changes in the Arnolfini Portrait of 1434 (left), the man's face was originally higher by about the height of his eye; the woman's was higher, and her eyes looked more to the front. Each of his feet was underdrawn in one position, painted in another, and then overpainted in a third. These alterations are seen in infra-red reflectograms.[27]

Similar uses of infrared are made by historians on various types of objects, especially very old written documents such as the Dead Sea Scrolls, the Roman works in the Villa of the Papyri, and the Silk Road texts found in the Dunhuang Caves.[28] Carbon black used in ink can show up extremely well.

Biological systems[edit]

Thermographic image of a snake eating a mouse
Thermographic image of a fruit bat.

The pit viper has a pair of infrared sensory pits on its head. There is uncertainty regarding the exact thermal sensitivity of this biological infrared detection system.[29][30]

Other organisms that have thermoreceptive organs are pythons (family Pythonidae), some boas (family Boidae), the Common Vampire Bat (Desmodus rotundus), a variety of jewel beetles (Melanophila acuminata),[31] darkly pigmented butterflies (Pachliopta aristolochiae and Troides rhadamantus plateni), and possibly blood-sucking bugs (Triatoma infestans).[32]

Although near-infrared vision (780–1000 nm) has long been deemed impossible due to noise in visual pigments,[33] sensation of near-infrared light was reported in the common carp and in three cichlid species.[33][34][35][36][37] Fish use NIR to capture prey[33] and for phototactic swimming orientation.[37] NIR sensation in fish may be relevant under poor lighting conditions during twilight[33] and in turbid surface waters.[37]

Photobiomodulation[edit]

Near-infrared light, or photobiomodulation, is used for treatment of chemotherapy-induced oral ulceration as well as wound healing. There is some work relating to anti-herpes virus treatment.[38] Research projects include work on central nervous system healing effects via cytochrome c oxidase upregulation and other possible mechanisms.[39]

Health hazard[edit]

Strong infrared radiation in certain industry high-heat settings may be hazard to the eyes, resulting in damage or blindness to the user. Since the radiation is invisible, special IR-proof goggles must be worn in such places.[40]

Earth as an infrared emitter[edit]

Schematic of the greenhouse effect

Earth's surface and the clouds absorb visible and invisible radiation from the sun and re-emit much of the energy as infrared back to atmosphere. Certain substances in the atmosphere, chiefly cloud droplets and water vapor, but also carbon dioxide, methane, nitrous oxide, sulfur hexafluoride, and chlorofluorocarbons,[41] absorb this infrared, and re-radiate it in all directions including back to Earth. Thus, the greenhouse effect keeps the atmosphere and surface much warmer than if the infrared absorbers were absent from the atmosphere.[42]

History of infrared science[edit]

The discovery of infrared radiation is ascribed to William Herschel, the astronomer, in the early 19th century. Herschel published his results in 1800 before the Royal Society of London. Herschel used a prism to refract light from the sun and detected the infrared, beyond the red part of the spectrum, through an increase in the temperature recorded on a thermometer. He was surprised at the result and called them "Calorific Rays". The term 'Infrared' did not appear until late in the 19th century.[43][44]

Other important dates include:[15]

Infrared radiation was discovered in 1800 by William Herschel.

See also[edit]

References[edit]

  1. ^ Liew, S. C. "Electromagnetic Waves". Centre for Remote Imaging, Sensing and Processing. Retrieved 2006-10-27. 
  2. ^ Sliney, David H.; Wangemann, Robert T.; Franks, James K.; Wolbarsht, Myron L. (1976). "Visual sensitivity of the eye to infrared laser radiation". Journal of the Optical Society of America 66 (4): 339–341. doi:10.1364/JOSA.66.000339. (subscription required (help)). "The foveal sensitivity to several near-infrared laser wavelengths was measured. It was found that the eye could respond to radiation at wavelengths at least as far as 1064 nm. A continuous 1064 nm laser source appeared red, but a 1060 nm pulsed laser source appeared green, which suggests the presence of second harmonic generation in the retina." 
  3. ^ Lynch, David K.; Livingston, William Charles (2001). Color and Light in Nature (2nd ed.). Cambridge, UK: Cambridge University Press. p. 231. ISBN 978-0-521-77504-5. Retrieved 12 October 2013. "Limits of the eye's overall range of sensitivity extends from about 310 to 1050 nanometers" 
  4. ^ Dash, Madhab Chandra; Dash, Satya Prakash (2009). Fundamentals Of Ecology 3E. Tata McGraw-Hill Education. p. 213. ISBN 978-1-259-08109-5. Retrieved 18 October 2013. "Normally the human eye responds to light rays from 390 to 760 nm. This can be extended to a range of 310 to 1,050 nm under artificial conditions." 
  5. ^ Saidman, Jean (15 May 1933). "Sur la visibilité de l'ultraviolet jusqu'à la longueur d'onde 3130" [The visibility of the ultraviolet to the wave length of 3130]. Comptes rendus de l'Académie des sciences (in French) 196: 1537–9. 
  6. ^ Reusch, William (1999). "Infrared Spectroscopy". Michigan State University. Retrieved 2006-10-27. 
  7. ^ a b "IR Astronomy: Overview". NASA Infrared Astronomy and Processing Center. Retrieved 2006-10-30. 
  8. ^ Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed. ed.). CRC Press. p. 10.233. ISBN 1-4398-5511-0. 
  9. ^ "Reference Solar Spectral Irradiance: Air Mass 1.5". Retrieved 2009-11-12. 
  10. ^ Byrnes, James (2009). Unexploded Ordnance Detection and Mitigation. Springer. pp. 21–22. ISBN 978-1-4020-9252-7. 
  11. ^ "Photoacoustic technique 'hears' the sound of dangerous chemical agents". R&D Magazine. August 14, 2012. rdmag.com. Retrieved September 8, 2012. 
  12. ^ Henderson, Roy. "Wavelength considerations". Instituts für Umform- und Hochleistungs. Archived from the original on 2007-10-28. Retrieved 2007-10-18. 
  13. ^ ISO 20473:2007
  14. ^ "Near, Mid and Far-Infrared". NASA IPAC. Retrieved 2007-04-04. 
  15. ^ a b Miller, Principles of Infrared Technology (Van Nostrand Reinhold, 1992), and Miller and Friedman, Photonic Rules of Thumb, 2004. ISBN 978-0-442-01210-6[page needed]
  16. ^ Griffin, Donald R.; Hubbard, Ruth; Wald, George (1947). "The Sensitivity of the Human Eye to Infra-Red Radiation". J. Opt. Soc. Am. 37 (7): 546–553. doi:10.1364/JOSA.37.000546. 
  17. ^ Ramaswami, Rajiv (May 2002). "Optical Fiber Communication: From Transmission to Networking" (PDF). IEEE. Retrieved 2006-10-18. 
  18. ^ "Introduction to Solar Energy" (DOC). Passive Solar Heating & Cooling Manual. Rodale Press, Inc. 1980. Retrieved 2007-08-12. 
  19. ^ McCreary, Jeremy (October 30, 2004). "Infrared (IR) basics for digital photographers-capturing the unseen (Sidebar: Black Body Radiation)". Digital Photography For What It's Worth. Retrieved 2006-11-07. 
  20. ^ a b c "How Night Vision Works". American Technologies Network Corporation. Retrieved 2007-08-12. 
  21. ^ Bryant, Lynn (2007-06-11). "How does thermal imaging work? A closer look at what is behind this remarkable technology". Retrieved 2007-08-12. 
  22. ^ Holma, H., (May 2011), Thermische Hyperspektralbildgebung im langwelligen Infrarot, Photonik
  23. ^ Frost&Sullivan, Technical Insights, Aerospace&Defence (Feb 2011): World First Thermal Hyperspectral Camera for Unmanned Aerial Vehicles
  24. ^ Mahulikar, S.P., Sonawane, H.R., & Rao, G.A. (2007). "Infrared signature studies of aerospace vehicles". Progress in Aerospace Sciences 43 (7–8): 218–245. Bibcode:2007PrAeS..43..218M. doi:10.1016/j.paerosci.2007.06.002. 
  25. ^ "IR Reflectography for Non-destructive Analysis of Underdrawings in Art Objects". Sensors Unlimited, Inc. Retrieved 2009-02-20. 
  26. ^ "The Mass of Saint Gregory: Examining a Painting Using Infrared Reflectography". The Cleveland Museum of Art. Retrieved 2009-02-20. 
  27. ^ National Gallery Catalogues: The Fifteenth Century Netherlandish Paintings by Lorne Campbell, 1998, ISBN 1-85709-171-X, OL392219M, OCLC 40732051, LCCN 98-66510, (also titled The Fifteenth Century Netherlandish Schools)[page needed]
  28. ^ "International Dunhuang Project An Introduction to digital infrared photography and its application within IDP -paper pdf 6.4 MB". Idp.bl.uk. Retrieved 2011-11-08. 
  29. ^ Jones, B.S.; Lynn, W.F.; Stone, M.O. (2001). "Thermal Modeling of Snake Infrared Reception: Evidence for Limited Detection Range". Journal of Theoretical Biology 209 (2): 201–211. doi:10.1006/jtbi.2000.2256. PMID 11401462. 
  30. ^ Gorbunov, V.; Fuchigami, N.; Stone, M.; Grace, M.; Tsukruk, V. V. (2002). "Biological Thermal Detection: Micromechanical and Microthermal Properties of Biological Infrared Receptors". Biomacromolecules 3 (1): 106–115. doi:10.1021/bm015591f. PMID 11866562. 
  31. ^ a b Evans, W.G. (1966). "Infrared receptors in Melanophila acuminata De Geer". Nature 202 (4928): 211. Bibcode:1964Natur.202..211E. doi:10.1038/202211a0. 
  32. ^ Campbell, Angela L.; Naik, Rajesh R.; Sowards, Laura; Stone, Morley O. (2002). "Biological infrared imaging and sensing". Micrometre 33 (2): 211–225. doi:10.1016/S0968-4328(01)00010-5. PMID 11567889. 
  33. ^ a b c d Meuthen, Denis; Rick, Ingolf P.; Thünken, Timo; Baldauf, Sebastian A. (2012). "Visual prey detection by near-infrared cues in a fish". Naturwissenschaften 99 (12): 1063–6. Bibcode:2012NW.....99.1063M. doi:10.1007/s00114-012-0980-7. PMID 23086394. 
  34. ^ Endo, M.; Kobayashi R.; Ariga, K.; Yoshizaki, G. and Takeuchi, T. (2002). "Postural control in tilapia under microgravity and the near infrared irradiated conditions". Nippon Suisan Gakkaish 68 (6): 887–892. doi:10.2331/suisan.68.887. 
  35. ^ Kobayashi R.; Endo, M.; Yoshizaki, G. and Takeuchi, T. (2002). "Sensitivity of tilapia to infrared light measured using a rotating striped drum differs between two strains". Nippon Suisan Gakkaish 68 (5): 646–651. doi:10.2331/suisan.68.646. 
  36. ^ Matsumoto, Taro; Kawamura, Gunzo (2005). "The eyes of the common carp and Nile tilapia are sensitive to near-infrared". Fisheries Science 71 (2): 350–355. doi:10.1111/j.1444-2906.2005.00971.x. 
  37. ^ a b c Shcherbakov, Denis; Knörzer, Alexandra; Hilbig, Reinhard; Haas, Ulrich; Blum, Martin (2012). "Near-infrared orientation of Mozambique tilapia Oreochromis mossambicus". Zoology 115 (4): 233–238. doi:10.1016/j.zool.2012.01.005. PMID 22770589. 
  38. ^ Hargate, G (2006). "A randomised double-blind study comparing the effect of 1072-nm light against placebo for the treatment of herpes labialis". Clinical and experimental dermatology 31 (5): 638–41. doi:10.1111/j.1365-2230.2006.02191.x. PMID 16780494. 
  39. ^ Desmet KD, Paz DA, Corry JJ, Eells JT, Wong-Riley MT, Henry MM, Buchmann EV, Connelly MP, Dovi JV, Liang HL, Henshel DS, Yeager RL, Millsap DS, Lim J, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT (2006). "Clinical and experimental applications of NIR-LED photobiomodulation". Photomedicine and laser surgery 24 (2): 121–8. doi:10.1089/pho.2006.24.121. PMID 16706690. 
  40. ^ Rosso, Monona l (2001). The Artist's Complete Health and Safety Guide. Allworth Press. pp. 33–. ISBN 978-1-58115-204-3. 
  41. ^ "Global Sources of Greenhouse Gases". Emissions of Greenhouse Gases in the United States 2000. Energy Information Administration. 2002-05-02. Retrieved 2007-08-13. 
  42. ^ "Clouds & Radiation". Retrieved 2007-08-12. 
  43. ^ Herschel, William (1800). "Experiments on the Refrangibility of the Invisible Rays of the Sun". Philosophical Transactions of the Royal Society of London 90: 284–292. doi:10.1098/rstl.1800.0015. JSTOR 107057. 
  44. ^ "Herschel Discovers Infrared Light". Coolcosmos.ipac.caltech.edu. Retrieved 2011-11-08. 
  45. ^ "Implant gives rats sixth sense for infrared light". Wired UK. 14 February 2013. Retrieved 14 February 2013. 

External links[edit]