Integrated gate-commutated thyristor

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The Integrated Gate-Commutated Thyristor (IGCT) is a power semiconductor electronic device, used for switching electric current in industrial equipment. It is related to the gate turn-off (GTO) thyristor. It was jointly developed by Mitsubishi and ABB.[1] Like the GTO thyristor, the IGCT is a fully controllable power switch, meaning that it can be turned both on and off by its control terminal (the gate). Gate drive electronics are integrated with the thyristor device.[2]

Device Description[edit]

Circuit symbol for an IGCT

An IGCT is a special type of thyristor similar to a GTO. They can be turned on and off by a gate signal, have lower conduction loss as compared to GTOs, and withstand higher rates of voltage rise (dv/dt), such that no snubber is required for most applications.

The structure of an IGCT is very similar to a GTO thyristor. In an IGCT, the gate turn off current is greater than the anode current. This results in a complete elimination of minority carrier injection from the lower PN junction and faster turn off times. The main difference is a reduction in cell size, plus a much more substantial gate connection with much lower inductance in the gate drive circuit and drive circuit connection. The very high gate currents plus fast dI/dt rise of the gate current means that regular wires can not be used to connect the gate drive to the IGCT. The drive circuit PCB is integrated into the package of the device. The drive circuit surrounds the device and a large circular conductor attaching to the edge of the IGCT is used. The large contact area and short distance reduces both the inductance and resistance of the connection.

The IGCT's much faster turn-off times compared to the GTO's allows them to operate at higher frequencies—up to several of kHz for very short periods of time. However, because of high switching losses, typical operating frequency up to 500 Hz.

Reverse Bias[edit]

IGCT are available with or without reverse blocking capability. Reverse blocking capability adds to the forward voltage drop because of the need to have a long, low doped P1 region.

IGCT capable of blocking reverse voltage are known as symmetrical IGCT, abbreviated S-IGCT. Usually, the reverse blocking voltage rating and forward blocking voltage rating are the same. The typical application for symmetrical IGCT is in current source inverters.

IGCT incapable of blocking reverse voltage are known as asymmetrical IGCT, abbreviated A-IGCT. They typically have a reverse breakdown rating in the 10's of volts. A-IGCT are used where either a reverse conducting diode is applied in parallel (for example, in voltage source inverters) or where reverse voltage would never occur (for example, in switching power supplies or DC traction choppers).

Asymmetrical IGCT can be fabricated with a reverse conducting diode in the same package. These are known as RC-IGCT, for reverse conducting IGCT.


The main applications are in variable frequency inverters, drives and traction.

See also[edit]



  1. ^ Hingorani, Narain G; Laszlo Gyugi (2011). Understanding FACTS. India: IEEE Press. p. 42. ISBN 978-81-265-3040-3. 
  2. ^ Eric Carroll, "IGCTs: Moving on the Right Track" , Power Electronics Technology, Aug 1, 2002 [1], retrieved on Jan 8, 2010.

External links[edit]