Irish elk

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Irish elk
Temporal range: Middle Pleistocene to Early Holocene, 0.781–0.008Ma
Überseemuseum Bremen 2009 250.JPG
Mounted skeleton in Bremen
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Artiodactyla
Family: Cervidae
Genus: Megaloceros
Species: †M. giganteus
Binomial name
†Megaloceros giganteus
(Blumenbach, 1799)
Synonyms

†Megaceros giganteus
†Megaloceros giganteus giganteus

The Irish elk (Megaloceros giganteus)[1][2] is an extinct species of deer in the genus Megaloceros and is one of the largest deer that ever lived. Its range extended across Eurasia, from Ireland to northern Asia and Africa. A related form is recorded from China during the Late Pleistocene.[3] The most recent remains of the species have been carbon dated to about 7,700 years ago in Siberia.[4] Although most skeletons have been found in Irish bogs, the animal was not exclusively Irish and was not closely related to either of the living species currently called elk - Alces alces (the European elk, known in North America as the moose) or Cervus canadensis (the North American elk or wapiti). Early phylogenetic analyses supported the idea of a sister-group relationship between fallow deer (Dama dama) and the Irish Elk.[5][6] However, newer morphological studies prove that the Irish elk is more closely related to its modern regional counterparts of the Red Deer (Cervus elaphus). [7] For this reason, the name "Giant Deer" is used in some publications. [8] [9] [10] [11] [12]

Taxonomy[edit]

Skeletal reconstruction from 1856

In the seventeenth and eighteenth centuries it began to be apparent to scientists that many fossilized specimens being discovered did not represent any organisms that were currently living on earth. The Irish elk was among these specimens. Neither exclusive to Ireland or an elk, it was named so because the most well-known and most preserved fossil specimens have been found in in lake sediments and peat bogs in Ireland. The Irish elk had a far-reaching range; being located throughout Europe, northern Africa, and some related forms located in China. The first scientists’ descriptions of the elk erroneously confused the animal with the American moose, while other scientists believed the elk was identical to the European reindeer. These scientists did not have the current conception of evolutionary biology that we have now. They couldn’t comprehend that a species that once roamed the earth was no long alive at the present. They believed that the unexplained fossils had living ancestors in undiscovered parts of the globe. French scientist Georges Cuvier was the first to challenge that notion, documenting that the Irish elk did not belong to any species of mammal that was living at the time. His study of the Irish elk was a key moment in the history of the study of extinction.

Evolution[edit]

Skull of M. g. antecedens

The Irish Elk evolved throughout the last few million years during the Glacial Periods, specifically the Pleistocene Epoch. Many of these deer were found to be unable to survive many of these sub-arctic conditions. Once established, the elk spread throughout Europe, northern Asia and Africa, and some parts of China. [13]Physically, the Irish Elk was the heaviest known member of the “Old World deer”,[5] a division of the subfamily Cervinae whose groups the ”Old World deer” and “New World deer” are distinguished by foot structure rather than geographical origin.[14][citation needed][verification needed] Most remains of Irish Elk date from between 11,750 BP (Before Present)-with the first Megaloceros giganteus appearing about 400,000 years ago-and 10,950 BP.[15] Studies have shown they possibly evolved from M. antecedens. The earlier taxon — sometimes considered a paleosubspecies M. giganteus antecedens — is similar but had more complex and compact antlers.

Description[edit]

Restoration

The Irish Elk stood about 2.1 metres (6.9 ft) tall at the shoulders carrying the largest antlers of any known cervid (a maximum of 3.65 m (12.0 ft) from tip to tip and weighing up to 40 kg (88 lb)). In body size, the Irish Elk matched the extant moose subspecies of Alaska (Alces alces gigas) as the largest known deer. The Irish Elk is estimated to have attained a total mass of 540–600 kg (1,190–1,320 lb), with large specimens having weighed 700 kg (1,500 lb) or more, roughly similar to the Alaskan Moose.[16][17][18] A significant collection of M. giganteus skeletons can be found at the Natural History Museum in Dublin.

Palaeobiology[edit]

Size of Antlers[edit]

Skeleton on display with antlers spanning 2.7 m (9 ft) and a mass of 40 kg (90 lbs)

The size of Irish Elk antlers are distinctive. Scientists have proposed multiple theories regarding the evolution of these antlers. One theory is that their antlers, under constant and strong sexual selection, increased in size because males were using them in combat for access to females. Thus, it is hypothesized that they eventually became so unwieldy that the Irish Elk could not carry on the normal business of life and so became extinct. It was not until Stephen Jay Gould's important 1974 essay on Megaloceros that this theory was tested rigorously.

Gould demonstrated that for deer in general, species with a larger body size have antlers that are more than proportionately larger, a consequence of allometry, or differential growth rate of body size and antler size during development. Irish Elk had antlers of the appropriate size in correlation to their massive bodies. This does not mean that sexual selection played no part in maintaining large antler size, only that the antlers of the species' ancestors were already large to begin with. Indeed, Gould concluded that the large antler size and their position on the skull was very much maintained by sexual selection: they were morphologically ill-suited for combat between males, but their position was ideal to present them to intimidate rivals or impress females. Unlike other deer, M. giganteus did not even have to turn its head to present the antlers to best effect, but could accomplish this by simply looking straight ahead.[19] The size of antlers has also been attributed to the health of the Irish elk. "If the Irish elk responded to nutritional restriction as red deer do, a huge and well-fed stag with 40 kg antlers (the near maximal size; Gould 1974, Moen et al. 1999) would have had 20 to 28 kg antlers under poor conditions. These estimates are within the range of extant moose Alces alces antlers (Geist 1998). More typical prime stags with 35 kg antlers (Barnosky 1986) would have had 18 to 25 kg antlers in times of nutritional stress."[20] "A linear measure of antler size (basal circumference), however, was reduced even further to 41% of the mainland mean. Because basal circumference is highly correlated with other linear measures of antler size (Bartosˇ and Bahbouh 2006), such a decrease indicates that insular antler mass dropped to 1/14th of the mainland antler mass. This reduction in antler mass is 2.7 times more extreme than expected given the allometric relationship between antler and body masses in red deer (Gould 1974) and demonstrates a rapid evolution of smaller antlers. A similar change in a typical Irish elk population with prime stags having 35 kg antlers (Barnosky 1986) would result in antler weights of 13 kg or less in worsening climatic conditions. This estimate is within the range of extant wapiti/red deer (Cervus spp.) antler weights (Geist 1998). It has been noted that Irish elk stags in more adverse environments had smaller bodies and relatively even smaller antlers (Barnosky 1985, Moen et al. 1999), but proponents of the antler-extinction hypothesis have not addressed the possibility of rapid evolutionary reduction in antler size. We expect that the antlers of the Irish elk should have been able to evolve rapidly in the face of selection for smaller and less expensive sizes. This conclusion is supported by the great diversity of Irish elk antler forms found among different populations at different times, including compact upright orientations possibly from populations inhabiting more heavily wooded environments (Lister 1994) suggesting the evolutionary malleability of Irish elk antlers."[21] In 1987, Kitchener presented evidence that Irish Elk antlers were in fact used for fighting.[22] In addition, the Irish elk's antlers had several functions such as being a display for attraction of females and dominance of rival males.[23] The elks shed their antlers and re-grew a new pair during mating season.[24] Ultimately, the decrease in energy intake by the Late Pleistocene, influenced the ability to produce for Irish elk females.[25]

Orthogenesis[edit]

Prior to the 20th century, the Irish Elk was a prime example of Orthogenesis. Orthogenesis, also known as straight line evolution, is an evolutionary mechanism in which the successive organisms within the lineage of an evolutionary series become increasingly modified in a single undeviating direction. Orthogenesis was a widely accepted evolutionary mechanism in the 19th and 20th centuries. Orthogenesis is only a hypothesis, unlike natural selection which is understood by the scientific community as a theory. It was popular amongst anti-Darwinian paleontologists because it stated that evolution proceeded void of natural selection in a straight line. In terms of the Irish Elk, it is believed that orthogenesis caused an evolutionary trajectory towards antlers which became larger and larger. This was due to sexual selection which drove an increase in antler size. These antlers caused eventual extinction because the Irish Elk’s antlers would grow to sizes which inhibited proper feeding habits and caused the animal to become trapped in tree branches. [26] Other examples of orthogenesis include saber tooth tigers’ teeth growing to unbearable sizes or oysters coiling their valves into itself until it suffocated. The Irish Elk was a prime example of Orthogenesis because it had evolved from a smaller ancestor with smaller antlers. However, in the 1930s, Orthogenesis was disproved by Darwinians led by Julian Huxley, who noted that antler size was relative to body size. Because the Irish Elk was a large organism compared to its more smaller relatives such as deer, there was an allometric relationship between the antlers and body size. This theory, too, was countered by Stephen Jay Gould, as he deemed the allometry theory to be very similar to the orthogenesis theory.[27] Gould was convinced that the elk's antler served a primary, unknown purpose. He believed that their immense antlers did not only evolve for combat but that they were also visual representations. Gould and many modern day scientists have concluded that the antlers served as signals, in which the male elk with large antlers were more suited to attract females.[28] Thus, there is an increasing amount of evidence pointing to the idea that sexual selection was the driving force behind the large antlers, rather than orthogenesis or natural selection.[29]

It is easy to advance a number of hypotheses regarding the disappearance of the more localized populations of this species. The situation is less clear regarding the final demise of the Irish Elk in continental Eurasia east of the Urals. Stuart et al. (2004) tentatively suggest that a combination of human presence along rivers and slow decrease in habitat quality in upland areas presented the last Irish Elk with the choice of either good habitat but considerable hunting pressure, or general absence of humans in a suboptimal habitat.

Reproduction[edit]

Restoration by Charles R. Knight

There are frequent debates as to whether or not sexual selection led to the Irish Elk's extinction. Sexual selection can increase or decrease a population's chance of extinction, due to behaviors such as male-male competition and female choice. Also, sexual harassment by males can result in lower female fecundity or even death. [30] Regardless of the details of the species' life history, extinction would require that too few males survive to maturity to fertilize a sufficient number of females to maintain a viable population. [31]When it comes to male-male competition, if the assumption is that detrimental effects are clear in only the males, a surviving male would have a large amount of females to choose from, with little competition. Selection must, therefore, favor the less extreme male genotypes, and it appears impossible to generate a scenario where males with larger antlers are still selected for when the lifetime reproductive success of males with large antlers approaches zero (as required for deterministic extinction to occur). [32]

In female choice, sexual selection could, thus, reinforce natural selection and lead to quicker responses to environmental changes, should they occur. [33] With a decrease in male population, females have fewer choices, which could result in inbreeding. This can pose significant threats to population survival. [34] However, much of these studies are contradicting. Females may adaptively avoid the accumulation of inbreeding, so that female choice might increase effective population size. [35]

Fossils of the late Pleistocene elk Megaloceros giganteus from Ballybetagh bog, near Dublin, Ireland, indicate that males segregated from females during winters.[36] This type of segregation implies that the Irish elk had behaviors such as rutting and polygynous mating systems, where a single male mates with two or more females. This also supports the belief that the large antler size was used for social display. Within male groups, winterkill was the chief cause of death and was highest among juveniles and small adults with small antlers.[37]

Extinction[edit]

Traditionally, discussion of the cause of their extinction has focused on the antler size (rather than on their overall body size), which may be due more to their impact on the observer than any actual property. Some have suggested hunting by humans was a contributing factor in the demise of the Irish Elk, as may have been the case with other prehistoric megafauna, even assuming that the large antler size restricted the movement of males through forested regions or that it was by some other means a "maladaptation" (see Gould 1974). Others assume the ultimate cause of extinction may have been the adaptations for mineral metabolism that were beneficial to the Irish elk until vegetation changed.[38] But given the difficulty of recovering quantitative records of human hunting impacts from the sub-fossil record alone, the role of humans in the extinction of the Irish Elk is not yet clear.

Some research has suggested that a lack of sufficient high-quality forage caused the extinction of the elk. According to an article written by researchers Silvia Gonzalez, Andrew Kitcheneri, and Adrian Lister, in 2000, a reduction in forest density into the Late Pleistocene decreased nutritional selection and is believed to have led to a conflict between sexual selection and ultimately a decrease in antler and body size, which can explain what may have caused their demise.[39] High amounts of calcium and phosphate compounds are required to form antlers, and therefore large quantities of these minerals are required for the massive structures of the Irish Elk. The males (and male deer in general) met this requirement partly from their bones, replenishing them from food plants after the antlers were grown or reclaiming the nutrients from discarded antlers (as has been observed in extant deer). Thus, in the antler growth phase, Giant Deer suffered from a condition similar to osteoporosis.[40] When the climate changed at the end of the last glacial period, the vegetation in the animal's habitat also changed towards species that presumably could not deliver sufficient amounts of the required minerals, at least in the western part of its range.

Simply blaming antler size for their extinction may not be entirely accurate. The most likely cause is the significantly shortened growing season seen toward the end of the Pleistocene Era. This reduced availability in nutrition resulted in the lowering of the female reproduction output by about 50%.[41]

However, the most recent specimen of M. giganteus in northern Siberia, dated to approximately 7,700 years ago - well after the end of the last glacial period - shows no sign of nutrient stress. They come from a region with a continental climate where the proposed vegetation changes had not (yet) occurred.[42]

Discoveries have shown survival of the Irish elk after the last the ice age which some say officially ended around 11,000 years ago. This ice age made extinct countless species that couldn’t adapt and evolve, but did not hold the same effect to the Irish elk. Fossils have been discovered dating back to within 9,000 and 10,000 years to show that the elk continued on for one to two thousand years after. Its massive size and appearance helped ward off predators probably making it easier for the Irish elk to still function as normal giving it more focus on adaptation instead of survival during the ice age. With its close relation to the common day deer, and its obvious ability to somewhat weather the storm of evolution, could there still one day be Irish elk on our Earth? Although there’s no scientific evidence of an Irish elk existing within thousands of years, science can offer the possibility of the Irish elk walking the earth again. Melting permafrost, which is frozen soil most often found in high altitudes, has produced magnificently preserved Irish elk specimens. This offers the ability for the elks to be cloned. Although unlikely, it is a possibility since it is the only way because an animal cannot evolve into something that went extinct for its inability to evolve and adapt making cloning the possibility for the reappearance of the Irish elk. With no evolutionary evidence showing the true physical and ecological meaning of why the elks went extinct, it’s a high possibility that if resurrected the animal would have an optimistic future. Its large populations across all of Europe stretching to Asia shows it had all types of climates and terrains in which it could survive.

There is evidence that the decrease in viable food options for the elk not only led to starvation, but also decreased the ability of elk cows to properly nourish their young. The female Irish elk needed a very high level of food and energy to produce milk that could produce strong offspring. The Irish elk calves need to be very well-nourished to be strong enough to survive. During the Younger Dryas ice age females were not getting enough food, and therefore could not produce good enough milk to make their offspring strong. This led to offspring that were unable to escape predators, or fight to get the slowly declining supplies of food. With offspring that were unable to properly compete and survive, the extinction of the already dwindling Irish Elk population was inevitable.

Surviving the Ice Age[edit]

The Irish elks are known to have existed since 400,000 years ago. They were thought to be extinct a long time ago, but evidence shows that they may have survived until recent times along with another megafauna (the mammoth) from the Pleistocene era (1.6 million to 10,000 years ago) Scientists have studied ancient bones and teeth that show the giant elk lived until about 5000 B.C, which is more than 3000 years later than previously believed. Scientists suggest that even after the climate change of the planet, additional factors such as hunting or habitat destruction may have led to the eventual extinction of the Elk. Dr. Lister and his colleagues collected new data that suggest that the Ice age did have significant impacts on the Elks. In the UK, they got smaller, which could’ve been from the scarcity of food supply. Even though their body size shrank, the size of their antlers stayed the same. This suggests that the need for giant antlers were more crucial than the threat of starvation. After examining radiocarbon dating of several skeletal remains and the mapping of locations where the remains were found, the scientists concluded that the Elk population was widely spread throughout Europe before the last Ice age. After the “big freeze” the Elk’s range shrunk to the Ural Mountains, in modern-day Russia, which is in between Europe and Asia.

Cultural Significance[edit]

Folklore[edit]

Cave painting from Lascaux

A folk memory of the Irish Elk was once thought to be preserved in the Middle High German word Shelch, a large beast mentioned in the 13th-century Nibelungenlied along with the then-extant aurochs (Dar nach schluch er schiere, einen Wisent und einen Elch, Starcher Ure vier, und einen grimmen Schelch / "After this he straightway slew a Bison and an Elk, Of the strong Wild Oxen four, and a single fierce Schelch."). The Middle Irish word segh was also suggested as a reference to the Irish Elk. The turf cutters of Clooney and Tulla referred to the Irish Elk as the Fiaghore, pronounced faith mor. [43][44] However, these interpretations are not conclusive.[45][46]

Recreation of the species[edit]

New radiocarbon dates from two specimens in stratified contexts represent that giant deer still existed 1,400 years after their supposed extinction. Some giant deer found in Isle of Man and Ballaugh. Therefore, it confirms the survival of the species into early Holocene in this area. Comparing Ballaugh skeleton size to a large sample of male from the Irish Late Glacial, the Ballaugh skeleton is below the entire Irish range. The early Holocene Ballaugh animal has large skull. It shows that size decreased into the Holocene. Even Isle of Man specimen has a small body size; the antlers skeletons are well-sized range for adult males. There is strong intraspecific allometry among Irish deer. Smaller animals have relatively shorter antlers. Reduced display organs are estimated to stand for a prelude to extinction from nutritional stress. Reducing forage density leads to a conflict between sexual selection and antler size, and nutritional selection pressures. These factors reduced populations and the body size of the giant deer. However, data represents that they cannot have caused its extinction. By these different factors, it is hard to define the cause of extinction. In addition, there was the evidence that Irish elk survived after ice age ended, which thought it already extinct. The youngest Irish elk fossils found in Europe, which mark the species’ extinction. Many scientists argued that factors like ecological change, virulent disease, and hunting by people wiped out many large mammal species at that time. Then, fossils found at two places in western Siberia. That shows that it survived there. [47][48]

References[edit]

[49] [50]

  1. ^ Geist, Valerius (1998). Megaloceros: The Ice Age Giant and Its Living Relatives. In: Deer of the World. Stackpole Books. ISBN 0-8117-0496-3
  2. ^ Lister, A.M. (1987). Megaceros or Megaloceros? The nomenclature of the giant deer. Quaternary Newsletter 52: 14-16.
  3. ^ Gould, S.J. "The misnamed, mistreated, and misunderstood Irish elk.". W.W. Norton. 
  4. ^ Stuart, A.J.; Kosintsev, P.A.; Higham, T.F.G. & Lister, A.M. (2004). Pleistocene to Holocene extinction dynamics in giant deer and woolly mammoth. Nature 431(7009): 684-689. PMID 15470427 doi:10.1038/nature02890 PDF fulltext Supplementary information. Erratum in Nature 434(7031): 413, doi:10.1038/nature03413
  5. ^ a b Lister, A. M.; Edwards, C. J.; Nock, D. A. W.; Bunce, M.; van Pijlen, I. A.; Bradley, D. G.; Thomas, M. G.; Barnes, I. (2005). "The phylogenetic position of the giant deer Megaloceros giganteus". Nature 438 (7069): 850–853. doi:10.1038/nature04134. 
  6. ^ van der Made, J.; Tong, H.W. (2008). "Phylogeny of the giant deer with palmate brow tines Megaloceros from west and Sinomegaceros from east Eurasia". Quaternary International 179 (1): 135–162. doi:10.1016/j.quaint.2007.08.017. 
  7. ^ Kuehn, R., Ludt, C. J., Schroeder, W., & Rottmann, O. (2005). Molecular phylogeny of megaloceros giganteus -the giant deer or just a giant red deer? Zoological Science, 22(9), 1031-1044. doi:http://dx.doi.org/10.2108/zsj.22.1031
  8. ^ Vislobokova, I. A. (2010), “Giant Deer: Origin, Evolution, Role in the Biosphere,” Paleontological Journal. vol. 46 no. 7 pg. 643-775
  9. ^ Bro-Jorgensen, J. (2014), “Will their armaments be their downfall? Large horn size increases extinction risk in bovids,” Animal Conservation. vol. 17 no. 1 pg. 80-87
  10. ^ Lemaitre, J. F. (2014), “The allometry between secondary sexual traits and body size is nonlinear among cervids,” Biology Letter. vol. 10 no. 3
  11. ^ Highes, S et. al. (2006), “Molecular phylogeny of the extinct giant deer, Megalocerous giganteus,” Molecular Phylogenetics and Evolution. vol. 40 no. 1 pg. 285-291
  12. ^ Vislobokova, I. A. (2011), “Historical Development and Geographical Distribution of Giant Deer (Cervidae, Megacerini),” Paleontological Journal. vol. 45 no. 6 pg. 674-688
  13. ^ Gould, S.J. "The Case of the Irish Elk." The Case of the Irish Elk. UC Berkeley, n.d. Web. 23 Oct. 2014.
  14. ^ http://www.britannica.com/EBchecked/topic/691201/Cervinae
  15. ^ http://www.m3motorway.ie/RelatedContent/file,14080,en.pdf
  16. ^ http://www.motherearthnews.com/Nature-Community/1989-03-01/Of-Moose-Megaloceros-and-Miracles.aspx
  17. ^ R. D. E. Mc Phee, Extinctions in Near Time: Causes, Contexts, and Consequences p.262
  18. ^ [1]
  19. ^ Gould, Stephen J. (1974). Origin and Function of 'Bizarre' Structures - Antler Size and Skull Size in 'Irish Elk', Megaloceros giganteus. Evolution 28(2): 191-220. doi:10.2307/2407322 (First page text)
  20. ^ Getting to the hart of the matter: did antlers truly cause the extinction of the Irish elk?
  21. ^ Getting to the hart of the matter: did antlers truly cause the extinction of the Irish elk?
  22. ^ Kitchener, A (1987). "Fighting behavior of the extinct Irish elk". Modern Geology 11: 1–28. 
  23. ^ Barnosky, Anthony (19 April 1985). "Taphonomy and Herd Structure of the Extinct Irish Elk, Megalocerous giganteus". Science. New 228 (4697): 340–344. doi:10.1126/science.228.4697.340. 
  24. ^ "Irish elk". 
  25. ^ Worman, C., & Kimbrell, T. (2008). Getting to the Hart of the Matter: Did Antlers Truly Cause the Extinction of the Irish Elk?. Oikos, (9), 1397. doi:10.2307/40235535
  26. ^ Highes, S et. al. (2006), “Molecular phylogeny of the extinct giant deer, Megalocerous giganteus,” Molecular Phylogenetics and Evolution. vol. 40 no. 1 pg. 285-291
  27. ^ Anderson, Kristina. "What On Earth - A Canadian Newsletter for the Earth Sciences." What On Earth - A Canadian Newsletter for the Earth Sciences. N.p., 15 Nov. 2002. Web. 23 Oct. 2014.
  28. ^ Zimmer, Carl. "The Allure of Big Antlers : The Loom." The Loom. Discover, 3 Sept. 2008. Web. 23 Oct. 2014.
  29. ^ Zimmer, Carl. "The Allure of Big Antlers : The Loom." The Loom. Discover, 3 Sept. 2008. Web. 23 Oct. 2014.
  30. ^ Kokko, H., & Brooks, R. (2003). Sexy to die for? sexual selection and the risk of extinction. Annales Zoologici Fennici, 40(2), 207-219. Retrieved from http://search.proquest.com/docview/18804232?accountid=13626
  31. ^ Kokko, H., & Brooks, R. (2003). Sexy to die for? sexual selection and the risk of extinction. Annales Zoologici Fennici, 40(2), 207-219. Retrieved from http://search.proquest.com/docview/18804232?accountid=13626
  32. ^ Kokko, H., & Brooks, R. (2003). Sexy to die for? sexual selection and the risk of extinction. Annales Zoologici Fennici, 40(2), 207-219. Retrieved from http://search.proquest.com/docview/18804232?accountid=13626
  33. ^ Kokko, H., & Brooks, R. (2003). Sexy to die for? sexual selection and the risk of extinction. Annales Zoologici Fennici, 40(2), 207-219. Retrieved from http://search.proquest.com/docview/18804232?accountid=13626
  34. ^ Kokko, H., & Brooks, R. (2003). Sexy to die for? sexual selection and the risk of extinction. Annales Zoologici Fennici, 40(2), 207-219. Retrieved from http://search.proquest.com/docview/18804232?accountid=13626
  35. ^ Kokko, H., & Brooks, R. (2003). Sexy to die for? sexual selection and the risk of extinction. Annales Zoologici Fennici, 40(2), 207-219. Retrieved from http://search.proquest.com/docview/18804232?accountid=13626
  36. ^ Barnosky, A. D. (1985). Taphonomy and herd structure of the extinct irish elk, megaloceros giganteus. Science (Washington),228(4677), 340-343. Retrieved from http://search.proquest.com/docview/14217409?accountid=13626
  37. ^ Barnosky, A. D. (1985). Taphonomy and herd structure of the extinct irish elk, megaloceros giganteus. Science (Washington),228(4677), 340-343. Retrieved from http://search.proquest.com/docview/14217409?accountid=13626
  38. ^ Moen, Ron; John Pastor; Yosef Cohen (1999). "Antler growth and extinction of Irish elk". Evolutionary Ecology Research: 235–249. 
  39. ^ Gonzalez, Silvia; Andrew Kitchener; Adrian Lister (15 June 2000). "Survival of the Irish elk into the Holocene". Nature 405: 753–754. doi:10.1038/35015668. 
  40. ^ Moen, R.A.; Pastor, J. & Cohen, Y. (1999). Antler growth and extinction of Irish Elk. Evolutionary Ecology Research 1: 235–249. HTML abstract
  41. ^ Worman, C., & Kimbrell, T. (2008). Getting to the Hart of the Matter: Did Antlers Truly Cause the Extinction of the Irish Elk?. Oikos, (9), 1397. doi:10.2307/40235535
  42. ^ Hughes, Sandrine; Hayden, Thomas J.; Douady, Christophe J.; Tougard, Christelle; Germonpré, Mietje; Stuart, Anthony; Lbova, Lyudmila; Carden, Ruth F.; Hänni, Catherine; Say, Ludovic (2006). Molecular phylogeny of the extinct giant deer, Megaloceros giganteus. Molecular Phylogenetics and Evolution 40(1): 285–291. doi:10.1016/j.ympev.2006.02.004 PDF fulltext. Supplementary data 1, DOC fulltext Supplementary data 2, DOC fulltext Supplementary data 3, DOC fulltext
  43. ^ Cuvier, Georges; Edward Griffith et al. (1827). The Animal Kingdom Arranged in Conformity with Its Organization. London: G. B. Whittaker. pp. 87–89. 
  44. ^ Hibbert, S. (Oct–Apr 1830). "Additional Contributions towards the History of the Cervus Euryce, or Fossil Elk of Ireland". The Edinburgh Journal of Science 2 (3): 314.  Check date values in: |date= (help)
  45. ^ Owen, Richard (1846). A History of British Fossil Mammals, and Birds. London: John Van Voorst. pp. 461–462. 
  46. ^ Gould, Stephen Jay (June 1974). "The Origin and Function of 'Bizarre' Structures: Antler Size and Skull Size in the 'Irish Elk,' Megaloceros giganteus". Evolution (Society for the Study of Evolution) 28 (2): 191. doi:10.2307/2407322. JSTOR 2407322. 
  47. ^ Irish Elk Survived after Ice Age Ended Author(s): S. P. Source: Science News, Vol. 166, No. 19 (Nov. 6, 2004), p. 301 Published by: Society for Science & the Public
  48. ^ References Gonzalez, S., Kitchener, A., & Lister, A. (2000). Survival of the Irish elk into the Holocene. Nature, 405(6788), 753-754. doi:10.1038/35015668
  49. ^ Juliana, Adelman. "An Insight into Commercial Natural History: Richard Glennon, William Hinchy and the Nineteenth-century Trade in Giant Irish Deer Remains." Archives of Natural History 39.1 (2012): 16-26. Print.
  50. ^ e. Larson, Edward J. (2004). Evolution: The Remarkable History of a Scientific Theory

Further reading[edit]

Kurten is a paleo-anthropologist, and in this novel he presents a theory of Neanderthal extinction. Irish elk feature prominently, under the name shelk which Kurten coins (based on the aforementioned old German schelch) to avoid the problematic aspects of "Irish" and "elk" as discussed above. The book was first published in 1980, when the name "Giant Deer" was not yet being used widely.

External links[edit]