From Wikipedia, the free encyclopedia
Jump to: navigation, search
Zirconocene with an isosurface showing areas of the molecule susceptible to electrophilic attack.
Isosurface of vorticity trailed from a propeller blade

An isosurface is a three-dimensional analog of an isoline. It is a surface that represents points of a constant value (e.g. pressure, temperature, velocity, density) within a volume of space; in other words, it is a level set of a continuous function whose domain is 3D-space.

Isosurfaces are normally displayed using computer graphics, and are used as data visualization methods in computational fluid dynamics (CFD), allowing engineers to study features of a fluid flow (gas or liquid) around objects, such as aircraft wings. An isosurface may represent an individual shock wave in supersonic flight, or several isosurfaces may be generated showing a sequence of pressure values in the air flowing around a wing. Isosurfaces tend to be a popular form of visualization for volume datasets since they can be rendered by a simple polygonal model, which can be drawn on the screen very quickly.

In medical imaging, isosurfaces may be used to represent regions of a particular density in a three-dimensional CT scan, allowing the visualization of internal organs, bones, or other structures.

Numerous other disciplines that are interested in three-dimensional data often use isosurfaces to obtain information about pharmacology, chemistry, geophysics and meteorology.

A popular method of constructing an isosurface from a data volume is the marching cubes algorithm, and another, very similar method is the marching tetrahedrons algorithm. Yet another is called the asymptotic decider.

Examples of isosurfaces are 'Metaballs' or 'blobby objects' used in 3D visualisation. A more general way to construct an isosurface is to use the function representation.

See also[edit]


External links[edit]