# Italian school of algebraic geometry

(Redirected from Italian geometers)

In relation with the history of mathematics, the Italian school of algebraic geometry refers to the work over half a century or more (flourishing roughly 1885–1935) done internationally in birational geometry, particularly on algebraic surfaces. There were in the region of 30 to 40 leading mathematicians who made major contributions, about half of those being in fact Italian. The leadership fell to the group in Rome of Guido Castelnuovo, Federigo Enriques and Francesco Severi, who were involved in some of the deepest discoveries, as well as setting the style.

## Algebraic surfaces

The emphasis on algebraic surfacesalgebraic varieties of dimension two — followed on from an essentially complete geometric theory of algebraic curves (dimension 1). The position in around 1870 was that the curve theory had incorporated with Brill–Noether theory the Riemann–Roch theorem in all its refinements (via the detailed geometry of the theta-divisor).

The classification of algebraic surfaces was a bold and successful attempt to repeat the division of curves by their genus g. It corresponds to the rough classification into the three types: g= 0 (projective line); g = 1 (elliptic curve); and g > 1 (Riemann surfaces with independent holomorphic differentials). In the case of surfaces, the Enriques classification was into five similar big classes, with three of those being analogues of the curve cases, and two more (elliptic fibrations, and K3 surfaces, as they would now be called) being with the case of two-dimension abelian varieties in the 'middle' territory. This was an essentially sound, breakthrough set of insights, recovered in modern complex manifold language by Kunihiko Kodaira in the 1950s, and refined to include mod p phenomena by Zariski, the Shafarevich school and others by around 1960. The form of the Riemann–Roch theorem on a surface was also worked out.

## Foundational issues

Some proofs produced by the school are not considered satisfactory because of foundational difficulties. These included frequent use of birational models in dimension three of surfaces that can have non-singular models only when embedded in higher-dimensional projective space. In order to avoid these issues, a sophisticated theory of handling a linear system of divisors was developed (in effect, a line bundle theory for hyperplane sections of putative embeddings in projective space). Many modern techniques were found, in embryonic form, and in some cases the articulation of these ideas exceeded the available technical language.

## The geometers

According to Guerraggio & Nastasi (page 9, 2005) Luigi Cremona is "considered the founder of the Italian school of algebraic geometry". Later they explain that in Turin the collaboration of D'Ovidio and Corrado Segre "would bring, either by their own efforts or those of their students, Italian algebraic geometry to full maturity". A one-time student of Segre, H.F. Baker wrote (1926, page 269), [Corrado Segre] "may probably be said to be the father of that wonderful Italian school which has achieved so much in the birational theory of algebraical loci." On this topic, Brigaglia & Ciliberto (2004) say "Segre had headed and maintained the school of geometry that Luigi Cremona had established in 1860." Reference to the Mathematics Genealogy Project shows that, in terms of Italian doctorates, the real productivity of the school began with Guido Castelnuovo and Federigo Enriques. In the USA Oscar Zariski inspired many Ph.D.s.

The roll of honour of the school includes the following other Italians: Giacomo Albanese, Bertini, Campedelli, Oscar Chisini, Michele De Franchis, Pasquale del Pezzo, Beniamino Segre, Francesco Severi, Guido Zappa (with contributions also from Gino Fano, Rosati, Torelli, Giuseppe Veronese).

Elsewhere it involved H. F. Baker and Patrick du Val (UK), Arthur Byron Coble (USA), Georges Humbert and Charles Émile Picard (France), Lucien Godeaux (Belgium), Hermann Schubert and Max Noether, and later Erich Kähler (Germany), H. G. Zeuthen (Denmark).

These figures were all involved in algebraic geometry, rather than the pursuit of projective geometry as synthetic geometry, which during the period under discussion was a huge (in volume terms) but secondary subject (when judged by its importance as research).