Jablonski diagram

From Wikipedia, the free encyclopedia
Jump to: navigation, search
A Jablonski diagram showing the excitation of molecule A to its singlet excited state (1A*) followed by intersystem crossing to the triplet state (3A) that relaxes to the ground state by phosphorescence.

A Jablonski diagram is a diagram that illustrates the electronic states of a molecule and the transitions between them. The states are arranged vertically by energy and grouped horizontally by spin multiplicity. Nonradiative transitions are indicated by squiggly arrows and radiative transitions by straight arrows. The vibrational ground states of each electronic state are indicated with thick lines, the higher vibrational states with thinner lines.[1] The diagram is named after the Polish physicist Aleksander Jabłoński.[2]

Transitions[edit]

Radiative transitions involve the absorption, if the transition occurs to a higher energy level, or the emission, in the reverse case, of a photon. Nonradiative transitions arise through several different mechanisms, all differently labeled in the diagram. Relaxation of the excited state to its lowest vibrational level is called Vibrational relaxation. This process involves the dissipation of energy from the molecule to its surroundings, and thus it cannot occur for isolated molecules. A second type of nonradiative transition is internal conversion (IC), which occurs when a vibrational state of an electronically excited state can couple to a vibrational state of a lower electronic state. A third type is intersystem crossing (ISC); this is a transition to a state with a different spin multiplicity. In molecules with large spin-orbit coupling, intersystem crossing is much more important than in molecules that exhibit only small spin-orbit coupling. This type of nonradiative transition can give rise to phosphorescence.

A Jablonski diagram representing Förster resonance energy transfer (FRET)

See also[edit]

References[edit]

  1. ^ Elumalai, P., Atkins, P., de Paula, J. Atkins' Physical Chemistry, Oxford University Press, 2002. ISBN 0-19-879285-9
  2. ^ Jabłoński, Aleksander "Efficiency of Anti-Stokes Fluorescence in Dyes" Nature 1933, volume 131, pp. 839-840. doi:10.1038/131839b0

External links[edit]