James R. Biard

From Wikipedia, the free encyclopedia
Jump to: navigation, search
James R. Biard
James Biard.png
US Inventor of the GaAs Infrared LED
Born (1931-05-20) May 20, 1931 (age 83)
Paris, Texas
Residence United States
Nationality American
Fields Electrical engineering
Alma mater Texas A&M University; BS 1954, MS 1956, PhD 1957

Dr. James R. "Bob" Biard (born May 20, 1931) is an American electrical engineer and inventor who holds 71 U.S. patents and 6 foreign patents.[1] His list of patents include the GaAs infrared light-emitting diode (LED),[2] the optical isolator,[3] the Schottky transistor,[4] and Metal Oxide Semiconductor Read Only Memory (MOS ROM).[5] Dr. Biard currently works as a Senior Scientist for the Advanced Optical Components Division of Finisar in Allen, TX. He has also been on the staff of Texas A&M University as an Adjunct Professor of Electrical Engineering since 1980.

The GaAs IR Light-Emitting Diode[edit]

In the fall of 1961, while working at Texas Instruments Inc., Dr. Biard and Gary E. Pittman found that gallium arsenide (GaAs) emitted infrared light when electric current was applied. On Aug. 8th, 1962, Biard and Pittman filed a patent based on their findings, which described a zinc diffused p-n junction LED with a spaced cathode contact to allow for efficient emission of infrared light under forward bias. After establishing the priority of their work based on engineering notebooks predating submissions from G.E. Labs, RCA Research Labs, IBM Research Labs, Bell Labs, and Lincoln Labs at MIT, the U.S. patent office issued the two inventors US patent 3,293,513 for the GaAs infrared (IR) light-emitting diode, the first practical LED.[6] After filing the patent, T.I. immediately began a project to manufacture infrared diodes. They announced the first commercial LED product (the SNX-100) in October 1962. T.I. gave Biard and Pittman $1.00 each for their patent.

Infrared LEDs continue to be used today as transmitters in fiber optic data communication systems. They are also used in the remote control units of many commercial products including televisions, DVD players, and other domestic appliances.

Life and career[edit]

Bob grew up and attended school in Paris, TX where his father, James Christopher "Jimmy" Biard, worked as a farmer and a Dr. Pepper route salesman for the local Dr. Pepper company. His father eventually became manager of the local 7-Up company and ended up buying it from the former owner. His father also sold used cars, worked as a master plumber at Camp Maxey (an army camp north of Paris) during and after WW-II, and did plumbing work for homes and businesses in the Paris area. Later in life Jimmy became chief deputy sheriff in Lamar County, TX. Bob’s mother, Mary Ruth Biard (née Bills), worked as a retail sales person at the Collegiate Shop in downtown Paris. She also sang in quartets at weddings and funerals. While in high school, Bob worked for his father and an off duty fireman, who was also a plumber, during the summer as a plumber's assistant.

After receiving an associate degree from Paris Junior College in 1951, Bob transferred to Texas A&M University in College Station, TX where he received a B.S. in Electrical Engineering (1954), an M.S. in Electrical Engineering (1956), and a Ph.D. in Electrical Engineering (1957). While a student at Texas A&M, he met his wife Amelia Ruth Clark. They married on May 23, 1952 and later moved to Richardson, TX. Together they have 3 children (Jimmy, Jan, and Becky), 10 grandchildren, and 8 great-grandchildren.

Texas Instruments engineers in Dallas, TX (early 1960s). From left to right: Standing - Charles Phipps, Joe Weaver; Seated - James R. Biard, Jack Kilby, James Fischer

On June 3, 1957, three days after graduation, Dr. Biard was hired, along with his former Texas A&M professor Walter T. Matzen, by Texas Instruments Inc. in Dallas, TX as a molecular engineer. Here his work focused on the development of transistor circuits, microwave and optoelectronic components, avalanche photodiodes, silicon MOS Technology, high frequency transmission lines, solid state devices, and compound semiconductor materials technology.

In the summer of 1958, Texas Instruments hired Jack Kilby (the inventor of the integrated circuit). According to Dr. Biard, during TI’s annual two-week summer shutdown, "At the time we were new, so we had to work while the others were on vacation. He would often come by and talk to us." Kilby held more than 60 U.S. patents, including two with Dr. Biard (the first optical isolator - US3304431 and an electro-optical transistor switching device - US3413480). Biard later stated, "I had the pleasure of being the co-inventor on two of his 60 patents. It was an honor to have my name with his."

Diagram of the tunnel diode constructed on a zinc diffused area of gallium arsenide semi-insulating substrate[7]

In 1959, Dr. Biard and Gary Pittman were assigned to work together in the Semiconductor Research and Development Laboratory (SRDL) at Texas Instruments on the creation of GaAs varactor diodes used in X-band radar receivers. While investigating the valley current region of a tunnel diode they had constructed on a zinc diffused area of gallium arsenide semi-insulating substrate, they discovered a significant drop in resistance between the two Ohmic side contacts, when the diode was operated in forward bias. This photoconductive response in the semi-insulating substrate material was a result of photon emission, however, the photons were infrared, which cannot be seen by the human eye. In the fall of 1961, using an infrared image converter microscope recently brought in from Japan, they discovered all of the GaAs varactor diodes and tunnel diodes they had manufactured at the time emitted light. On Aug. 8th, 1962, Biard and Pittman filed a patent based on their findings titled "Semiconductor Radiant Diode". After four years spent establishing the priority of their work, the U.S. patent office issued the two inventors the patent for the GaAs infrared (IR) light-emitting diode. Most other organized research seeking LEDs at the time used II-VI semiconductors like cadmium sulfide (CdS) and cadmium telluride (CdTe), while Biard and Pittman's patent used gallium arsenide (GaAs), a III/V semiconductor. Based on their findings, T.I. immediately began a project to manufacture infrared diodes. In Oct. of 1962, they announced the first commercial LED product (the SNX-100), which sold for a price of $130 per unit. The SNX-100 employed a pure GaAs crystal to emit a 900 nm light output. It used gold-zinc for the P-type contact and tin alloy for the N-type contact. The IBM 059 Card Verifier, which was the Verifier companion to the IBM 029 Card Punch (announced Oct. 14th, 1964), was the first device to use infrared LEDs. The LEDs replaced tungsten bulbs that controlled punched card readers. Infrared light was sent through the holes or blocked by the card, which not only significantly reduced the size and power required, but also improved the reliability.

In Dec. of 2013, during a recollection of the patent, Dr. Biard stated the following:

The first diodes that we saw emitting light were not designed to be LEDs. They were varactor diodes and tunnel diodes, which had all of the N-type surface and P-type surface covered with Ohmic contact to achieve a low series resistance. At the time, the varactor diodes had an etched mesa geometry and the IR light came out around the edge of the mesa. On the tunnel diodes, the light could be seen at the edges of the chip. They did not emit very much light, but it was enough for us to see with the IR image converter microscope. That led us to create a structure in which the N-type surface of the chip had spaced contacts, so the light emitted at the junction could be emitted from most of the top surface of the chip. Gary made those spaced N-type Ohmic contacts by tin plating metal wires and alloying the tin on the surface of the wire to the N-type GaAs surface. With a rectangular chip of GaAs most of the light emitted at the junction was reflected at the exit surface. The index of refraction of GaAs is 3.6 and air has an index of 1.0. This means that ~97% of the light emitted at the junction is totally internally reflected at the exit surface. The highest quantum efficiency that can be expected from a rectangular LED chip is ~2%, even with an antireflection coating on the optical exit surface. This total internal reflection problem led us to come up with the hemispherical dome LED. In this diode the N-type GaAs substrate is shaped into a hemisphere and the hemispherical surface is covered with an antireflection coating (preferably silicon nitride) to minimize front surface reflection. The LED P-N junction is in the center of the flat face of the hemisphere. The central P-type region is covered with the anode Ohmic contact. The cathode Ohmic contact was a donut shape that covered most of the remainder of the N-type flat surface of the hemisphere. By making the diameter of the hemisphere 3.6 times larger than the diameter of the P-type layer, all the light at the exit surface of the hemisphere was inside the critical angle for total internal reflection. This resulted in a huge increase in quantum efficiency because up to 50% of the light emitted at the junction could escape from the chip at the hemispherical exit surface. The other half of the light went toward the P-type Ohmic contact and was absorbed in the GaAs. The absorption in the thicker N-type GaAs between the junction and exit surface resulted in less improvement in quantum efficiency than what we had hoped for, however, the dome LEDs were much more efficient.

On Nov. 29th, 1963 Dr. Biard, Gary Pittman, Edward L. Bonin, and Jack Kilby filed a patent titled "Photosensitive Transistor Chopper Using Light Emissive Diode" (U.S. Patent US3304431); the first optical isolator. Within the patent they described a phototransistor chopper consisting of an LED optically coupled with a dual emitter, photosensitive, silicon transistor. The arrangement provided a switching function in which the switch was completely electrically isolated from the LED that drove it. The transistor operated in response to light emitted from the LED when forward current bias was generated across the junction of the diode. When emitted light struck the surface of the transistor, it was absorbed in the regions of both the emitter-base and base-collector junctions causing the transistor to conduct. This photoconductive transistor could be rapidly turned on and off by intensity modulating the LED at a very high frequency using high frequency alternating voltage. Prior to their invention, complete electrical isolation of the switch element in a chopper from the driving source for opening and closing the switch element was not possible, even through use of isolation transformers. Using isolation transformers, which were bulky and expensive, in miniaturized circuits to separate the driving source and the switch element resulted in magnetic pick-up and spike feed-through due to the transformer winding capacitance. Optical isolators were ideal because they're very small and can be mounted to a circuit board. In addition, they offer protection against excessively high voltages, reduce noise levels, and make measurements more accurate. Optical isolators are now used in all sorts of electronic circuits in which electrical isolation is important.

In the mid-1960s, Dr. Biard was placed in charge of both the Optoelectronic branch and the MOS branch in the Semiconductor Research and Development Lab (SRDL) at Texas Instruments. In 1964, TI's Opto branch developed a monolithic visible LED element consisting of a 3x5 array of red LEDs capable of displaying the numbers 0-9. The device was lacking a means of driving the array, so Dr. Biard and Bob Crawford (from the MOS branch) designed a P-channel MOS circuit using binary coded decimal inputs to turn on the appropriate 15 output lines. The MOS circuit worked on the first pass and was implemented into a simulated cockpit altimeter display shown in the TI booth that year at the New York IEEE show and convention. Biard and Crawford filed a patent for their device (U.S. Patent US3541543) on July 25, 1966, referred to as the "Binary Decoder", unaware at the time that it was an MOS ROM. Within the patent they described how to fabricate metal gate ROMs of small size to permanently program an MOS logic array upon manufacture by the gate level mask or moat mask. In the 1980s, while employed for Honeywell, Dr. Biard testified before the International Trade Commission in Washington D.C., per the request of Texas Instruments, in a royalties suit regarding a Japanese firm's use of their Binary Decoder patent in their own MOS ROM circuits. The judge in the lawsuit determined that the Japanese firm did not violate TI's patent rights because they had made enough changes in the implementation of their circuits. MOS ROM devices mounted on circuit boards are the most common example of nonvolatile memory used to provide the storage of fixed programs in digital equipment such as minicomputers and microprocessor systems. For example, most calculators employ MOS ROM to store a program consisting of a large number of instruction words.

In 1964, Dr. Biard designed linear amplifiers to work with photodetectors and used hot carrier diodes to keep the transistors from going into saturation. The engineer in the next office was working on developing Diode Transistor Logic (DTL) ICs and was also having saturation problems. On Dec. 31st, 1964, Dr. Biard filed a patent for the Schottky transistor (U.S. Patent US3463975), a.k.a. the Schottky-clamped transistor, which consisted of a transistor and an internal metal-semiconductor Schottky-barrier diode.[8] The patent was filed based on Schottky Clamped DTL monolithic integrated logic circuits using aluminum-silicon Schottky diodes across the collector-base junctions of the transistors and in the input to adjust the logic levels. The diode prevented the transistor from saturating by minimizing the forward bias on the collector-base transistor junction, thus reducing the minority carrier injection to a negligible amount. The Schottky diode could be integrated on the same die, it had a compact layout, it had no minority carrier charge storage, and it was faster than a conventional junction diode. Dr. Biard's patent was filed before Transistor–transistor logic (TTL) circuits had been invented, yet it was written broadly enough to cover the Schottky clamped TTL ICs using platinum silicide Schottky diodes, which were much more predictable and manufacturable than the aluminum Schottky diodes he originally used. His patent ultimately improved the switching speed of saturated logic designs, such as the Schottky-TTL, at a low cost. In 1985, Dr. Biard received the Patrick E. Haggerty Innovation Award for this patent.

In the 1960s, during the ongoing development of integrated circuit related technologies, avalanche photodiodes were afflicted by a relatively high bulk leakage current, which was amplified by the avalanche gain. The leakage current resulted from holes and electrons thermally generated in the device. This leakage current restricted the photodiode's use, unless a cooling apparatus was used conjunctively. On Feb. 15th, 1968 Dr. Biard filed a patent titled "Low Bulk Leakage Current Avalanche Photodiode" (U.S. Patent US3534231),[9] which presented the design of an avalanche photodiode to reduce the bulk leakage currents without having to be cooled. The design consisted of three semiconductor layers, located one on the other, with a barrier layer below the photosensitive junction in the form of a reverse biased second junction. The first two layers constituted the photosensitive junction and the third layer constituted a highly doped semiconductor back region present at a distance from the photosensitive junction smaller than a diffusion length of the thermally generated carriers.

In 1969, Dr. Biard left Texas Instruments to join Spectronics, Inc., when the company was founded, as Vice President of Research. While at Spectronics, Dr. Biard worked on the development of optical couplers used in a data bus developed for airborne avionics systems. He also worked on integrated circuits consisting of an LED driver and pin diode receiver used for digital fiber optic communications.[10] In 1978, Spectronics was acquired by Honeywell. From 1978 to 1987, Dr. Biard worked as Chief Scientist of the Honeywell Optoelectronics Division in Richardson, TX. Dr. Biard started their MICROSWITCH IC & Sensor Design Center and served as a member of the Components Group Sensor Planning Team. He was also the Components Group representative on the Honeywell Technology Board (HTB). The HTB was concerned with the development and transfer of technology throughout the Honeywell corporate structure. Dr. Biard's product development responsibilities included optoelectronic components (light emitting diodes and photodetectors), fiber optic components, transmitter & receiver modules, silicon Hall effect sensors, and pressure sensors.

In 1987, Dr. Biard became Chief Scientist of the Honeywell MICRO SWITCH Division. He then retired in Dec. 1998 only to be hired back on as a consultant. As a consultant, he became part of a team developing Vertical Cavity Surface Emitting Lasers (VCSELs). He was also involved in the interface between the MICRO SWITCH division, the Honeywell Corporate R&D Laboratory, and universities.

Bob playing the harmonica at the 2002 Texas A&M Electrical Engineering Dept. Christmas party

In 2006, Honeywell sold the VCSEL group to the Finisar Corporation, which hired Dr. Biard on half time as a consultant Senior Scientist for the Advanced Optical Components Division in Allen, TX. While working for Finisar, Dr. Biard has been issued a total of 28 engineering patents related to the design of 850 nm VCSELs and photodiodes used for high-speed fiber optic data transmission.

On June 7, 2014, Dr. Biard participated in a Shining Mindz workshop titled "Meet The Inventor Camp (LED)",[11] which allowed children to build circuits that use LED technology for optical communication and measurement. The children could also take pictures with Dr. Biard and get his autograph.

Bob is also an avid harmonica player. He's performed in the Dallas area at banquets, schools, churches, hospitals, retirement homes, and performance halls. His renditions of classic songs are done with several harmonicas and a musical saw.[12]


In the course of his technical career, Dr. Biard has published more than two dozen technical papers and made about the same number of unpublished presentations at major technical conferences. He also developed a one-week seminar on Fiber Optic Data Transmission that he's presented on five occasions. Some of his papers include:

W. T. Matzen and J. R. Biard, "Differential Amplifier Features D-C Stability", Electronics magazine, Vol. 32, No. 3; Jan. 16th, 1959.

J. R. Biard, "Low-Frequency Reactance Amplifier", 1960 IEEE International Solid-State Circuits Conference, Vol. 3, pp. 88–89; Feb. 1960.

E. L. Bonin and J. R. Biard, "Tunnel Diode Series Resistance", Proceedings of the IRE, Vol. 49, pp. 1679; Nov. 1961.

J. R. Biard and S. B. Watelski, "Evaluation of Germanium Epitaxial Films", Journal of The Electrochemical Society, Vol. 109, pp. 705; Apr. 1962.

J. R. Biard, E. L. Bonin, W. N. Carr, and G. E. Pittman, "GaAs Infrared Source", PGED Electron Device Conference, Washington, D.C.; Oct. 1962.

J. R. Biard, "Low-Frequency Reactance Amplifier", Proceedings of the IEEE, Vol. 51, No. 2, pp. 298–303; Feb. 1963.

J. R. Biard, E. L. Bonin, W. N. Carr, and G. E. Pittman, "GaAs Infrared Source for Optoelectronic Applications", 1963 IEEE International Solid-State Circuits Conference, Volume 6, pp. 108 – 109; Feb. 1963.

J. R. Biard, E. L. Bonin, W. N. Carr, and G. E. Pittman, "GaAs Infrared Source", IEEE Transactions on Electron Devices, Vol. 10, No. 2, pp. 109–110; Mar. 1963.

J. R. Biard, W. N. Carr, and B. S. Reed, "Analysis of a GaAs Laser", Trans. AIME, Vol. 230, pp. 286-290; Jan. 1964.

W. N. Carr and J. R. Biard, "Common Occurrence of Artifacts or 'Ghost' Peaks in Semiconductor Injection Electroluminescence Spectra", Journal of Applied Physics, Vol. 35, No. 9, pp. 2776–2777; Sept. 1964.

W. N. Carr and J. R. Biard, "Optical Generation Spectrum for the Electron Thermal-Injection Mechanism in GaAs Diodes", Journal of Applied Physics, Vol. 35, No. 9, pp. 2777–2779; Sept. 1964.

J. R. Biard, J. F. Leezer and B. S. Reed, "Characteristics of GaAs Guard-Ring, Diodes", IEEE Trans. on Electron Devices, Solid-State Devices Research Conf., Vol. ED-11, pp. 537; Nov. 1964.

J. R. Biard, E. L. Bonin, W. T. Matzen, and J. D. Merryman, "Optoelectronics as Applied to Functional Electronic Blocks", Proceedings of the IEEE, Volume: 52, No: 12, pp. 1529–1536; Dec. 1964.

J. R. Biard, J. F. Leezer, and G. E. Pittman, "Degradation of Quantum Efficiency in GaAs Light Emitters", GaAs: 1966 Symposium Proceedings, (Reading England), Institute of Physics and Physical Society, pp. 113–117; Sept. 1966.

J. R. Biard and W. N. Shaunfield, "A High Frequency Silicon Avalanche Photodiode", 1966 International Electron Devices Meeting, Vol. 12, pp. 30; Oct. 1966.

J. R. Biard and W. N. Shaunfield, "A Model of the Avalanche Photodiode", IEEE Trans. on Electron Devices, Vol. ED-14, No. 5, pp. 233–238; May 1967.

J. R. Biard and K. L. Ashley, "Optical Microprobe Response of GaAs Diodes", IEEE Trans. on Electron Devices, Vol. ED-14, No. 8, pp. 429–432; Aug. 1967.

W. N. Shaunfield, J. R. Biard, and D. W. Boone, "A Germanium Avalanche Photodetector for 1.06 Microns", International Electron Devices Meeting, Washington, D.C.; Oct. 1967.

J. R. Biard and H. Strack, "GaAs Light Era On The Way", Electronics magazine, Vol. 40, No. 23, pp. 127-129; Nov. 13th, 1967.

J. R. Biard and L. L. Stewart, "Optoelectronic Data Bus", IEEE Electromagnetic Compatibility Symposium Rec., IEEE 74CH0803-7 EMC; Oct. 1973.

J. R. Biard, B. R. Eimer, and J. J. Geddes, "LED Driver and Pin Diode Receiver ICs for Digital Fiber Optic Communications", Proceedings of SPIE, Vol. 150, Laser and Fiber Optic Communications, pp. 169-174; Dec. 1978.

R. M. Kolbas, J. Abrokwah, J. K. Carney, D. H. Bradshaw, B. R. Elmer, and J. R. Biard, "Planar monolithic integration of a photodiode and a GaAs preamplifier", Applied Physics Letters, Volume 43, No. 9, pp. 821-823; Dec. 1983.

B. Hawkins and J. R. Biard, "Low-Voltage Silicon Avalanche Photodiodes for Fiber Optic Data Transmission"; IEEE Trans. on Components, Hybrids, and Manufacturing Technology; Vol. 7, No. 4, pp. 434-437; Dec. 1984.

R. H. Johnson, B. W. Johnson, and J. R. Biard, "Unified Physical DC and AC MESFET Model for Circuit Simulation and Device Modeling", IEEE Electron Devices Transactions; Sept. 1987.

A. Peczalski, G. Lee, J. R. Biard, et al., "A 6 K GaAs gate array with fully functional LSI personalization", Honeywell Syst. & Res. Center, Page(s): 581 - 590; April 1988.

P. Bjork, J. Lenz, B. Emo, and J. R. Biard, "Optically Powered Sensors For EMI Immune Aviation Sensing Systems", Proceedings of SPIE, Vol. 1173, Fiber Optic Systems for Mobile Platforms III, pp. 175-186; Sept. 1989.

A. Ramaswamy, J. P. van der Ziel, J. R. Biard, R. Johnson, and J. A. Tatum, "Electrical Characteristics of Proton-Implanted Vertical-Cavity Surface-Emitting Lasers", IEEE Journal of Quantum Electronics, Vol. 34, No. 11, pp. 2233-2240; Nov. 1998.

J. K. Guenter, J. A. Tatum, A. Clark, R. S. Penner, J. R. Biard, et al., "Commercialization of Honeywell's VCSEL Technology: Further Developments", Proceedings of SPIE, Vol. 4286, Vertical-Cavity Surface-Emitting Lasers V, pp. 1-14; May 2001.

B. M. Hawkins, R. A. Hawthorne III, J. K. Guenter, J. A. Tatum, and J. R. Biard, "Reliability of Various Size Oxide Aperture VCSELs", 2002 Proceedings: 52nd IEEE Electronic Components and Technology Conference, pp.540-550; May 2002.

J. A. Tatum, M. K. Hibbs-Brenner, J. R. Biard, et al., "Beyond 850 nm: Progress at Other Wavelengths and Implications from the Standard", Proceedings of SPIE, Vol. 4649, Vertical-Cavity Surface-Emitting Lasers VI, pp. 1-10; June 2002.

H. Chuang, J. R. Biard, J. Guenter, R. Johnson, G. A. Evans, and J. K. Butler, "A Simple Iterative Model for Oxide-Confined VCSELs", 2007 International Conference on Numerical Simulation of Optoelectronic Devices, pp.53-54; Sept. 2007

H. Chuang, J. R. Biard, J. Guenter, R. Johnson, G. A. Evans, and J. K. Butler, "An Iterative Model for the Steady-State Current Distribution in Oxide-Confined VCSELs", IEEE Journal of Quantum Electronics, Vol. 43, No. 11, pp. 1028-1040; Nov. 2007.

Awards and honors[edit]

In 1969, Dr. Biard was elected as a Life Fellow of IEEE cited for "outstanding contributions in the field of optoelectronics".

In 1985, he received the Patrick E. Haggerty Innovation Award for his contribution to the design and development of Schottky Logic.

In 1986, he was recognized as a Distinguished Alumnus of Texas A&M University.

In 1989, he received the Honeywell Lund Award.

In 1991, he was elected to membership in the National Academy of Engineering.

In May 2013, he was awarded the degree of Doctor of Science, honoris causa, from Southern Methodist University.

In Sept. 2013, he received the "Distinguished Graduate Award" from Paris High School in Paris, TX.


  1. ^ A complete listing of Dr. Biard's patents
  2. ^ Dr. Biard's presentation "The Invention Of The LED" delivered at the University of Texas at Dallas (UTD) in 2002
  3. ^ US Patent 3304431, Biard, James R., "Photosensitive Transistor Chopper Using Light Emissive Diode", filed Nov. 29th, 1963, Issued on Feb. 14th, 1967.
    The optical isolator => http://www.freepatentsonline.com/3304431.pdf
  4. ^ US Patent 3463975, Biard, James R., "Unitary Semiconductor High Speed Switching Device Utilizing a Barrier Diode", filed Dec. 31st, 1964, Issued on Aug. 26th, 1969.
    The Schottky transistor => http://www.freepatentsonline.com/3463975.pdf
  5. ^ US Patent 3541543, Biard, James R. and R. H. Crawford, "MOS Binary Decoder", filed July 25th, 1966, Issued on Nov. 17th, 1970.
    MOS ROM => http://www.freepatentsonline.com/3541543.pdf
  6. ^ US Patent 3293513, Biard, James R. and Gary Pittman, "Semiconductor Radiant Diode", filed Aug. 8th, 1962, Issued on Dec. 20th, 1966.
    The GaAs Infrared LED => http://www.freepatentsonline.com/3293513.pdf
  7. ^ Timeline of LED Inventors and Developments
  8. ^ Schottky-Barrier Diode Doubles the Speed of TTL Memory & Logic
  9. ^ "Low Bulk Leakage Current Avalanche Photodiode", Biard, James R., The Smithsonian Chip Collection, October 13, 1970
  10. ^ LED Driver And Pin Diode Receiver ICs For Digital Fiber Optic Communications
  11. ^ "Meet The Inventor Camp (LED)" hosted by the Satkriti club
  12. ^ Bob's Harmonica Program - May 31st, 1995