Jerome Lettvin

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Jerome Ysroael Lettvin
Lettvin Faraday cage.jpg
Jerome Lettvin in Building 20 at MIT in 1952 [1]
Born (1920-02-23)February 23, 1920
Chicago, Illinois, USA
Died April 23, 2011(2011-04-23) (aged 91)
Hingham, Massachusetts, USA
Nationality American
Fields Psychiatry, Neuroscience, Philosophy, Electrical Engineering, Communications Physiology, Mythopoetry
Institutions Rutgers (1988–2011)
MIT (1951–2011)
Stazione Zoologica
Manteno State Hospital (1948–1951)
University of Rochester (1947)
Alma mater University of Illinois (B.S., M.D. 1943)
Notable students Norman Geschwind[2]
Known for "What the Frog's Eye Tells the Frog's Brain"
Leary-Lettvin debate
Influences Norbert Wiener
Warren McCulloch
Walter Pitts
Derek Denny-Brown
Santiago Ramón y Cajal
Charles Scott Sherrington
John Zachary Young[citation needed]
Spouse Maggie (1947–)

Jerome Ysroael Lettvin (February 23, 1920 – April 23, 2011) was an American cognitive scientist and professor Emeritus of Electrical and Bioengineering and Communications Physiology at the Massachusetts Institute of Technology (MIT). He is best known as the author of the 1959 paper, "What the frog's eye tells the frog's brain",[3] one of the most cited papers in the Science Citation Index. He wrote it along with Humberto Maturana, Warren McCulloch and Walter Pitts and in the paper they gave special thanks and mention to the work of Oliver Selfridge at MIT.[4] He carried out neurophysiological studies in the spinal cord, made the first demonstration of "feature detectors" in the visual system, and studied information processing in the terminal branches of single axons. Around 1969, he originated the term grandmother cell[5] to illustrate the logical inconsistency of the concept.

Jerome Lettvin was popularly known as "Jerry", and was the author of many published articles on subjects varying from neurology and physiology to philosophy and politics.[6] Among his many activities at MIT, he served as one of the first directors of the Concourse Program, and, along with his wife Maggie, houseparent of the Bexley dorm.

Early life[edit]

Lettvin was born February 23, 1920 in Chicago as eldest of four children (including pianist Theodore Lettvin) to Solomon and Fanny Lettvin. Trained as a neurologist and psychiatrist at the University of Illinois (B.S., M.D. 1943), he practiced medicine at the Battle of the Bulge during World War II.[7] After the war, he continued practicing neurology and researching nervous systems, partly at Boston City Hospital, and then at MIT with Walter Pitts and Warren McCulloch under Norbert Wiener.

Scientific philosophy[edit]

Lettvin with Walter Pitts.

Lettvin considered any experiment a failure from which the experimental animal does not recover to a comfortable happy life. He was one of the very few neurophysiologists who successfully recorded pulses from unmyelinated vertebrate axons.

His main approach to scientific observation seemed to be "reductio ad absurdum"; or find the least observation that contradicts a key assumption in the proposed theory. This has led to unusual experiments being performed (some are listed below). In his best-known paper, "What the frog's eye tells the frog's brain", he took a major risk proposing feature detectors in the retina. When presenting this paper at a conference he was laughed off the stage by his peers. Yet for the next ten years this paper was the most cited paper in all of science. So a corollary approach to finding contradictions was taking risks; the bigger the risk, the likelier a new finding. This he promoted in all his students. Robert Provine quotes him as asking "If it does not change everything, why waste your time doing the study?"

He made a careful study of the work of Leibniz, discovering that he had constructed a mechanical computer in the 17th century, amongst other creations hundreds of years ahead of his time. Jerome Lettvin was also known for his friendship with the genius cognitive scientist and logician named Walter Pitts, a polymath who first showed the relationship between the philosophy of Leibniz, universal computing and "A Logical Calculus Immanent in Nervous Activity".

He continued to research the properties of nervous systems throughout his life, most recently focusing on ion dynamics in axon cytoskeleton.

He worried about how scientists approached their own work as evidenced in this playful translation he made from Morgenstern's poetry.

Σ Ξ MAN MET A Π MAN

After many "if"s and "but"s,
emendations, notes, and cuts,

they bring their theory, complete,
to lay, for Science, at his feet.

But Science, sad to say it, he
seldom heeds the laity

abstractedly he flips his hand,
mutters "metaphysic" and

bends himself again to start
another curve on another chart.

"Come," says Pitts, "his line is laid;
the only points he'll miss, we've made."

(This, like his other translations of Morgenstern's poems[8] from German, retains the playfulness of the originals.)

Unusual experiments[edit]

Lettvin in his Faraday cage in Building 20 at MIT in 1952 without which his earlier Remak fiber recordings would not have been possible.
vertebrate unmyelinated axons exhibit sub-millisecond triphasic spikes
action potentials found at myelinated nodes of Ranvier are altogether absent in Remak fibers[citation needed]
a cut optic nerve trained to the olfactory lobe regrows, remapping the retina
(Functional Properties of regenerated axons, Brain Research 1995)
senses appear to direct brain growth rather than the reverse
axonal stimulation backfires into the cell body
action potentials can travel from axons to the axon hillock and into the cell[citation needed]
stimulating the bulbo-reticular inhibitory system stops strychnine convulsions
reflexes have system-wide attenuation controls[citation needed]
axon pulse intervals can be separated into bands;
[9]some form of information is encoded in pulse intervals
color constancy derives from boundaries and vertices imaged on the retina
(The Colors of Things, Scientific American 1986)
color is relational, not related to wavelength
images stationary on the retina fade to invisible
temporal or spatial transients are critical to vision[citation needed]
visible insects cause no nervous activity in a frog that sees a duck
attention obeys hierarchical rules[citation needed]

While working in the Marine Zoological Station in Naples, Italy, he had a 30-foot-long (9.1 m) room in which octopus holding tanks were kept, with fine mesh metal screens to keep them from escaping. One tank, at the far end, held his youngest son Jonathan's pet octopus named juvenile delinquent (JD).[10][not in citation given] One day he teased JD with a stick. The next morning, his son and he came to the door and noticed a puddle under the door. Fearing the worst (broken tanks), he opened the door, and was greeted by a blast of water in his face (but not his son's face). From across the room, and through the screen, JD had perfect aim, after which he jetted to the bottom of the tank, inked it up, and hid for the rest of the day. Still confused about the water under the door, Lettvin looked at the back of the door and saw a spot of water at the height of his face. JD had been practicing for revenge. From this and other experiences, Lettvin concluded that octopodes are highly intelligent, and from that time on he never ate octopus again, out of respect for octopodes as colleagues.[citation needed]

Politics[edit]

Lettvin was a firm advocate of individual rights and heterogeneous society. His father nurtured these views with ideas from Kropotkin's book Mutual Aid. He has been expert witness in trials in both the U.S. and in Israel always on behalf of individual rights.

During the antiwar demonstrations of the 1960s he helped negotiate agreements between police and protesters, and took part in the 1968 student takeover of the MIT Student Center in support of an AWOL soldier.[11] He deplored when law is made using false science and false statistics, or when proper observations are distorted for advantage.

When the American Academy of Arts and Sciences withdrew its award of the annual Emerson-Thoreau medal from Ezra Pound for his leanings during World War II, Lettvin resigned from the academy, in which letter he wrote "It is not art that concerns you but politics, not taste but special interest, not excellence but propriety."[citation needed]

Debating[edit]

Main article: Leary-Lettvin debate

On May 3, 1967, in the Kresge Auditorium at MIT, Lettvin debated with Timothy Leary (a licensed psychologist) about the merits and dangers of LSD. Timothy Leary took the position that LSD is a beneficial tool in exploring consciousness and should be utilized as such. Jerome Lettvin took the position that LSD is a dangerous molecule that should not be used.[1][12][13]

Lettvin was a regular invitee at the Ig Nobel Prize ceremony as "the world's smartest man" to debate extemporaneously against groups of people on their own subjects of expertise.[citation needed]

Published papers[edit]

  • Year Title, Publication, Issue; Contributing Authors[6]
  • 1943 A mathematical theory of the affective psychoses, Bulletin of Mathematical Biophysics, Vol. 5; (with Pitts)
  • 1948 Somatic functions of the central nervous system, Annual Review of Physiology Vol. 10; (with McCulloch)
  • 1948 The path of suppression in the spinal grey matter, Federation Proceedings, Vol. 7, No. 1, March; (with McCulloch)
  • 1950 An electrical hypothesis of central inhibition and facilitation, Proceedings of the Association for Research in Nervous and Mental Diseases, Vol. 30, December; (with McCulloch, Pitts, and Dell)
  • 1950 Positivity in ventral horn during bulbar reticular inhibition of motoneurons Federation Proceedings, Vol. 9, No. 1, March; (with Dell and McCulloch)
  • 1951 Changes produced in the central nervous system by ultrasound, Science, Vol. 114, No. 2974; (with Wall, Fry, Stephens, and Tucker)
  • 1952 Sources and sinks of current in the spinal cord, Federation Proceedings, Vol. 11, No. 1, March; (with Pitts and Brazier)
  • 1953 Comparaison entre les machines a calculer et le cerveau, Les machines à calculer et la pensée humaine, Vo.l. 37, pp. 425–443; (with McCulloch, Pitts, and Dell)
  • 1953 On microelectrodes for plotting currents in nervous tissue, Proceedings of the Physiological Society, Vol. 122; (with Howland, McCulloch, Pitts, and Wall)
  • 1954 Maps derived by bipolar microelectrode stimulation within the spinal cord, Federation Proceedings, Vol. 13, March; (with Pitts, McCulloch, Wall, and Howland)
  • 1955 Physiology of a primary chemoreceptor unit, Science, Vol. 122, No. 3166, September; (with Hodgson and Roeder)
  • 1955 Reflex inhibition by dorsal root interaction, Journal of Neurophysiology', vol.18; (with Howland, McCulloch, Pitts, and Wall)
  • 1955 Effects of strychnine with special reference to spinal afferent fibres, Epilepsia, Series III, Vol. 4; (with Wall, McCulloch, and Pitts)
  • 1955 The terminal arborisation of the cat's pyramidal tract determined by a new technique, The Yale Journal of Biology and Medicine, Vol. 28, Nos. 3-4, Dec.-Feb.; (with Wall, McCulloch, and Pitts)
  • 1956 Excitability changes in anatomical components of the monosynaptic are following tetanic stimulation, Federation Proceedings, Vol. 15, No. 1, March; (with McCulloch and Pitts)
  • 1956 Limits on nerve impulse transmission, IRE Convention Record, National, Part 4, March 19–20; (with Wall, Pitts, and McCulloch)
  • 1956 Central effects of strychnine on spinal afferent fibres, A.M.A. Archives of Neurology and Psychiatry, Vol. 75: 323-324; (with McCulloch, Pitts, and Wall)
  • 1957 Membrane currents in clamped vertebrate nerve, Nature, Vol. 180, pp. 1290–1291, Dec. 7; (with McCulloch, and Pitts)
  • 1956/1957 Footnotes on a headstage, IRE Transactions on Medical Electronics; (with Howland and Gesteland)
  • 1956 Evidence that cut optic nerve fibers in a frog regenerate to their proper places in the tectum, Science, Vol. 130, No. 3390, December; (with Maturana, McCulloch, and Pitts)
  • 1959 How seen movement appears in the frog's optic nerve, Federation Proceedings Vol. 18, No. 1, March; (with Maturana, Pitts, and McCulloch)
  • 1959 What the frog's eye tells the frog's brain, Proceedings of the IRE, Vol. 47, No. 11, November; (with Maturana, McCulloch, and Pitts)
  • 1959 Comments on microelectrodes, Proceedings of the IRE, Vol. 47, No. 11, November; (with Gesteland, Howland, and Pitts)
  • 1959 Number of fibres in the optic nerve and the number of ganglion cells in the retina of anurans, Nature, Vol. 183, pp. 1406–1407, May 16; (with Maturana)
  • 1959 Bridge for measuring the impedance of metal microelectrodes, The Review of Scientific Instruments, Vol. 30, No. 4, April; (with Gesteland and Howland)
  • 1960 Anatomy and physiology of vision in the frog (Rana pipiens), The Journal of General Physiology, Vol. 43, No. 6, Supplement pp. 129–175; (withMaturana, McCulloch, and Pitts)
  • 1961 Two remarks on the visual system of the frog, Research Laboratory of Electronics, MIT, Vol. 38; (with Maturana, Pitts, and McCulloch)
  • 1962 Translations of Morgenstern's poetry, The Fat Abbot, Fall Winter 1962 (Retaining the playfulness of Morgenstern's originals.)
  • 1963 Odor specificities of the frog's olfactory receptors, Proceedings of the First International Symposium on Olfaction and Taste (Pergamon Press); (with Gesteland, Pitts, and Rojas)
  • 1964 A theory of passive ion flux through axon membranes, Nature, Vol. 202, No. 4939, pp. 1338–1339, June; (with Pickard, McCulloch, and Pitts)
  • 1964 Microelectrodes research laboratory of electronics, MIT Encyclopedia of Electrochemistry, (Reinhold Publishing Corporation: New York), pp. 822–826; (with Gesteland, Howland, and Pitts)
  • 1964 Receptor model of the frog's nose, NEREM Record; (with Gesteland)
  • 1964 Caesium ions do not pass the membrane of the giant axon, Proceedings of the National Academy of Sciences, Vol. 52, No. 5, pp. 1177–1183; (with Pickard, Moore, Takata, Pooler, and Bernstein)
  • 1964? Lanthanum simulates high calcium and reduces conductance changes in nerve membranes, XXIII International Congress of Physiological Sciences ; (with Moore, Takata, and Pickard)
  • 1964 Passive transport of ions across nerve membranes, Minutes of the APS-NES 1964 Spring Meeting of the New England Section, 4 April; (with Pickard)
  • 1964 Experiments in perception, Tech Engineering News, November;
  • 1965 Chemical transmission in the nose of the frog, Journal of Physiology, Vol. 181, pp. 525–559; (with Gesteland, and Pitts)
  • 1965 Octopus optic responses, Experimental Neurology, Vol. 12, No. 3, July; (with Boycott, Maturana, and Wall)
  • 1965 Glass-coated tungsten microelectrodes, Science, Vol. 148, No.3676, pp. 1462–1464; (with Baldwin, and Frenk)
  • 1965 Speculations on smell, Cold Spring Harbor Symposia on Quantitative Biology, Vol. 30; (with Gesteland)
  • 1965 General discussion: early receptor potential, Cold Spring Harbor Symposia on Quantitative Biology, vol. 30; (with Platt, Wald, and Brown)
  • 1966 Ionic conductance changes in lobster axon membrane when lanthanum is substituted for calcium, Journal of General Physiology, Vol. 50, Number 2, November; (with Takata, Pickard, and Moore)
  • 1966 Alkali cation selectivity of a squid axon membrane, N.Y. Academy of Sciences, vol. 137, pp. 818–829; (with Moore, Anderson, Blaustein, Takata, Pickard, Bernstein, and Pooler)
  • 1966 A demonstration of ion-exchange phenomena in phospholipid mono-molecular films, Nature, Vol. 209, No. 5026, pp. 886–887, February; (with Rojas and Pickard)
  • 1967 You can't even step in the same river once, Journal of the American Museum of Natural History , Vol. 76, No. 8, October;
  • 1967 The colors of colored things, MIT Research Laboratory of Electronics Quarterly Progress Reports, No. 87, October 15, 1967
  • 1968 A code in the nose, Cybernetic Problems in Bionics (Gordon and Breach Science Publishers); (with Gesteland, Pitts, and Chung)
  • 1968 Pure renaissance, Natural History, June–July, p. 62
  • 1969 The annotated octopus, Natural History, Vol. 78, No. 9, p. 10; (Sokolski with notes by Lettvin)
  • 1970 Multiple meaning in single visual units, Brain, Behavior, and Evolution, vol.3, pp. 72–101; (with Chung and Raymond)
  • 1970 The rise and fall of progress, Natural History, Vol. 79, No. 3, pp. 80–82, March
  • 1972 Scratched and chiseled marks of man, Natural History
  • 1974 The CLOOGE: a simple device for interspike interval analysis, Proceedings of the Physiological Society, vol. 239, pp. 63–66, February; (with Chung and Raymond)
  • 1976 A physical model for the passage of ions through an ion-specific channel - I. The sodium-like channel, Mathematical Biosciences, vol.32, pp. 37–50; (with Pickard)
  • 1976 Probability of conduction deficit as related to fiber length in random-distribution models of peripheral neuropathies, Journal of the Neurological Sciences, Vol. 29, pp. 39–53; (with Waxman, Brill, Geschwind, and Sabin)
  • 1976 The use of myth, Technology Review, Vol. 78(7), pp. 52–57
  • 1976 On seeing sidelong, The Sciences, Vol. 16, No. 4, July/August
  • 1977 The gorgon's eye, Technology Review, Vol. 80(2), pp. 74–83
  • 1977 Freedoms and constraints in color vision, Brain Theory Newsletter, Vol. 3, No. 2, December; (with Linden)
  • 1978 Aftereffects of activity in peripheral axons as a clue to nervous coding, Physiology and Pathobiology of Axons, edited by Waxman (Raven Press: New York); (with Raymond)
  • 1978 Relation of the e-wave to ganglion cell activity and rod responses in the frog, Vision Research, Vol. 18, pp. 1181–1188; (with Newman)
  • 1980 Anatomy and physiology of a binocular system in the frog Rana pipiens, Brain Research Vol. 192, pp. 313–325; (with Gruberg)
  • 1983 Processing of polarized light by squid photoreceptors, Nature, Vol. 304, pp. 534–536; (with Saidel and MacNichol)
  • 1986 The colors of things, Scientific American, Vol.255.3, pp. 84–91; September (with Brou, Philippe, Sciascia, and Linden)
  • 1995 Functional Properties of Regenerated Optic Axons Terminating in the Primary Olfactory Cortex

References[edit]

  1. ^ a b "Jerome Lettvin Stories", More Data, More Noise: A Celebration of the 60th Birthday of Jerome Y. Lettvin, MIT, February 1980.
  2. ^ Squire 1998, p. 229
  3. ^ Lettvin, J.Y; Maturana, H.R.; McCulloch, W.S.; Pitts, W.H., What the frog's eye tells the frog's brain, Proceedings of the IRE, Vol. 47, No. 11, November 1959
  4. ^ "We are particularly grateful to O. G. Selfridge, whose experiments with mechanical recognizers of pattern helped drive us to this work and whose criticism in part shaped its course."
  5. ^ Gross, Charles G., Genealogy of the "Grandmother Cell", NEUROSCIENTIST 8(5):512–518, 2002. doi:10.1177/107385802237175
  6. ^ a b Jerome Lettvin page
  7. ^ Squire, Larry R., The history of neuroscience in autobiography, Volume 2, Society for Neuroscience, 1998. Cf. pp. 223-243 on Jerome Lettvin.
  8. ^ The Fat Abbot, 1962
  9. ^ Multiple meaning in single visual units
  10. ^ Jonathan D. Lettvin Home Page
  11. ^ "Six-Day M.I.T. Sanctuary Ends Quietly Without Bust", The Harvard Crimson, Monday, November 04, 1968
  12. ^ "Leary and Lettvin Clash on Drugs In M.I.T. Debate", The Harvard Crimson, Thursday, May 4, 1967
  13. ^ Collins, Bud, "LSD Lion loses to M.I.T. Mauler", The Boston Globe, November 24, 1967. N.B. later reprinted in Collins, Bud, "LSD Lion loses to M.I.T. Mauler", Psychiatric Quarterly, Volume 42, Number 1 (1968), 104-106, doi:10.1007/BF01563956

Further reading[edit]