KCNK2

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Potassium channel, subfamily K, member 2
Identifiers
Symbols KCNK2 ; K2p2.1; TPKC1; TREK; TREK-1; TREK1; hTREK-1c; hTREK-1e
External IDs OMIM603219 MGI109366 HomoloGene7794 IUPHAR: K2P2.1 GeneCards: KCNK2 Gene
RNA expression pattern
PBB GE KCNK2 210261 at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 3776 16526
Ensembl ENSG00000082482 ENSMUSG00000037624
UniProt O95069 P97438
RefSeq (mRNA) NM_001017424 NM_001159850
RefSeq (protein) NP_001017424 NP_001153322
Location (UCSC) Chr 1:
215.18 – 215.41 Mb
Chr 1:
189.21 – 189.34 Mb
PubMed search [1] [2]

Potassium channel subfamily K member 2 is a protein that in humans is encoded by the KCNK2 gene.[1][2][3]

This gene encodes K2P2.1, one of the members of the two-pore-domain background potassium channel protein family. This type of potassium channel is formed by two homodimers that create a channel that leaks potassium out of the cell to control resting membrane potential. The channel can be opened, however, by certain anesthetics, membrane stretching, intracellular acidosis, and heat. Three transcript variants encoding different isoforms have been found for this gene.[3]

Function in neurons[edit]

Another name for this channel is TREK-1. TREK-1 is part of the subfamily of mechano-gated potassium channels that are present in mammalian neurons. They can be gated in both chemical and physical ways and can be opened via both physical stimuli and chemical stimuli. TREK-1 channels are found in a variety of tissues, but are particularly abundant in the brain and heart and are seen in various types of neurons.[4] The C-terminal of TREK-1 channels plays a role in the mechanosensitivity of the channels.[5]

In the neurons of the central nervous system, TREK-1 channels are important in physiological, pathophysiological, and pharmacological processes, including having a role in electrogenesis, ischemia, and anesthesia. TREK-1 has an important role in neuroprotection against epilepsy and brain and spinal chord ischemia and is being evaluated as a potential target for new developments of therapeutic agents for neurology and anesthesiology.[6]

In the absence of a properly functioning cytoskeleton, TREK-1 channels can still open via mechanical gating.[7] The cell membrane functions independently of the cytoskeleton and the thickness and curvature of the membrane is able to modulate the activity of the TREK-1 channels.[8] The insertion of certain compounds into the membrane is thought to mediate the opening of TREK-1 by forming a curve in the membrane.[9]

See also[edit]

References[edit]

  1. ^ Lesage F, Lazdunski M (Oct 1998). "Mapping of human potassium channel genes TREK-1 (KCNK2) and TASK (KCNK3) to chromosomes 1q41 and 2p23". Genomics 51 (3): 478–9. doi:10.1006/geno.1998.5397. PMID 9721223. 
  2. ^ Goldstein SA, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S (Dec 2005). "International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels". Pharmacol Rev 57 (4): 527–40. doi:10.1124/pr.57.4.12. PMID 16382106. 
  3. ^ a b "Entrez Gene: KCNK2 potassium channel, subfamily K, member 2". 
  4. ^ Fink, M.; Duprat, F.; Lesage, F.; Reyes, R.; Romey, G.; Heurteaux, C.; Lazdunski, M. (1996). "Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel". The EMBO Journal 15 (24): 6854–6862. PMC 452511. PMID 9003761.  edit
  5. ^ Patel, A. J.; Honoré, E.; Maingret, F.; Lesage, F.; Fink, M.; Duprat, F.; Lazdunski, M. (1998). "A mammalian two pore domain mechano-gated S-like K+ channel". The EMBO Journal 17 (15): 4283–4290. doi:10.1093/emboj/17.15.4283. PMC 1170762. PMID 9687497.  edit
  6. ^ Giorda, R.; Weisberg, E. P.; Ip, T. K.; Trucco, M. (1992). "Genomic structure and strain-specific expression of the natural killer cell receptor NKR-P1". Journal of immunology (Baltimore, Md. : 1950) 149 (6): 1957–1963. PMID 1517565.  edit
  7. ^ Patel, A. J.; Honoré, E.; Maingret, F.; Lesage, F.; Fink, M.; Duprat, F.; Lazdunski, M. (1998). "A mammalian two pore domain mechano-gated S-like K+ channel". The EMBO Journal 17 (15): 4283–4290. doi:10.1093/emboj/17.15.4283. PMC 1170762. PMID 9687497.  edit
  8. ^ Patel, AJ; Lazdunski, M; Honoré, E (2001). "Lipid and mechano-gated 2P domain K(+) channels". Curr Opin Cell Biol 13 (4): 422–428. doi:10.1016/s0955-0674(00)00231-3. 
  9. ^ Patel, A. J.; Honoré, E.; Maingret, F.; Lesage, F.; Fink, M.; Duprat, F.; Lazdunski, M. (1998). "A mammalian two pore domain mechano-gated S-like K+ channel". The EMBO Journal 17 (15): 4283–4290. doi:10.1093/emboj/17.15.4283. PMC 1170762. PMID 9687497.  edit

Further reading[edit]

External links[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.