Kantor–Koecher–Tits construction

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In algebra, the Kantor–Koecher–Tits construction is a method of constructing a Lie algebra from a Jordan algebra, introduced by Jacques Tits (1962), Kantor (1964), and Koecher (1967).

If J is a Jordan algebra, the Kantor–Koecher–Tits construction puts a Lie algebra structure on J + J + J + Inner(J), the sum of 3 copies of J and the Lie algebra of inner derivations of J.

When applied to a 27-dimensional exceptional Jordan algebra it gives a Lie algebra of type E7 of dimension 133.

The Kantor–Koecher–Tits construction was used by Kac (1977) to classify the finite-dimensional simple Jordan superalgebras.

References[edit]